File size: 13,019 Bytes
a877d94 6abfe60 c62e7ca 6abfe60 a877d94 649c74e a877d94 85842c9 a877d94 8864c0c a877d94 d86ad89 a877d94 d86ad89 c62e7ca a877d94 c62e7ca a877d94 85842c9 a877d94 85842c9 a877d94 85842c9 a877d94 85842c9 a877d94 a7478ad a877d94 a7478ad a877d94 d86ad89 5e52881 a7478ad 5307f8f 5e52881 5307f8f a877d94 d86ad89 ff37b9d 649c74e b94c8e4 53f5224 b94c8e4 1a86238 f44eaff 1a86238 f44eaff abec4c4 e5dae66 abec4c4 e5dae66 1a86238 e5dae66 abec4c4 e5dae66 abec4c4 e5dae66 d42894d 425faa5 1a86238 6abfe60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
base_model:
- jinaai/jina-embeddings-v4
base_model_relation: quantized
---
# jina-embeddings-v4-gguf
A collection of GGUF and quantizations for [`jina-embeddings-v4`](https://huggingface.co/jinaai/jina-embeddings-v4).
> [!IMPORTANT]
> We highly recommend to first read [this blog post for more technical details and customized llama.cpp build](https://jina.ai/news/optimizing-ggufs-for-decoder-only-embedding-models).
> [!TIP]
> Multimodal v4-GGUF is now available, [check out this blog post for the walkthrough](https://jina.ai/news/multimodal-embeddings-in-llama-cpp-and-gguf/).
## Overview
`jina-embeddings-v4` is a cutting-edge universal embedding model [for multimodal multilingual retrieval](https://jina.ai/news/jina-embeddings-v4-universal-embeddings-for-multimodal-multilingual-retrieval). It's based on `qwen2.5-vl-3b-instruct` with three LoRA adapters: `retrieval` (optimized for retrieval tasks), `text-matching` (optimized for sentence similarity tasks), and `code` (optimized for code retrieval tasks). It is also heavily trained for visual document retrieval and late-interaction style multi-vector output.
## Text-Only Task-Specific Models
We removed the visual components of `qwen2.5-vl` and merged all LoRA adapters back into the base language model. This results in three task-specific v4 models with 3.09B parameters, downsized from the original jina-embeddings-v4 3.75B parameters:
| HuggingFace Repo | Task |
|---|---|
| [`jinaai/jina-embeddings-v4-text-retrieval-GGUF`](https://huggingface.co/jinaai/jina-embeddings-v4-text-retrieval-GGUF) | Text retrieval |
| [`jinaai/jina-embeddings-v4-text-code-GGUF`](https://huggingface.co/jinaai/jina-embeddings-v4-text-code-GGUF) | Code retrieval |
| [`jinaai/jina-embeddings-v4-text-matching-GGUF`](https://huggingface.co/jinaai/jina-embeddings-v4-text-matching-GGUF) | Sentence similarity |
All models above provide F16, Q8_0, Q6_K, Q5_K_M, Q4_K_M, Q3_K_M and dynamic quantizations such as IQ1_S, IQ2_XXS.
### Limitations vs original v4 model
- They can not handle image input.
- They can not output multi-vector embeddings.
- You must add `Query: ` or `Passage: ` in front of the input. [Check this table for the details](#consistency-wrt-automodelfrom_pretrained).
## Multimodal Retrieval Model
We forked llama.cpp and make it work with image input and embedding output. [Check out this new blog post for the walkthrough](https://jina.ai/news/multimodal-embeddings-in-llama-cpp-and-gguf/).
## Get Embeddings
First [install llama.cpp](https://github.com/ggml-org/llama.cpp/blob/master/docs/install.md).
Run `llama-server` to host the embedding model as OpenAI API compatible HTTP server. As an example for using `text-matching` with `F16`, you can do:
```bash
llama-server -hf jinaai/jina-embeddings-v4-text-matching-GGUF:F16 --embedding --pooling mean -ub 8192
```
Remarks:
- `--pooling mean` is required as v4 is mean-pooling embeddings.
- setting `--pooling none` is *not* as same as the multi-vector embeddings of v4. The original v4 has a trained MLP on top of the last hidden states to output multi-vector embeddings, each has 128-dim. In GGUF, this MLP was chopped off.
Client:
```bash
curl -X POST "http://127.0.0.1:8080/v1/embeddings" \
-H "Content-Type: application/json" \
-d '{
"input": [
"Query: A beautiful sunset over the beach",
"Query: Un beau coucher de soleil sur la plage",
"Query: 海滩上美丽的日落",
"Query: 浜辺に沈む美しい夕日"
]
}'
```
Note: When using `retrieval` and `code` models, add `Query: ` or `Passage:` in front of your input, like this:
```bash
curl -X POST "http://127.0.0.1:8080/v1/embeddings" \
-H "Content-Type: application/json" \
-d '{
"input": [
"Query: A beautiful sunset over the beach",
"Query: Un beau coucher de soleil sur la plage",
"Passage: 海滩上美丽的日落",
"Passage: 浜辺に沈む美しい夕日"
]
}'
```
You can also use `llama-embedding` for one-shot embedding:
```bash
llama-embedding -hf jinaai/jina-embeddings-v4-text-matching-GGUF:F16 --pooling mean -p "Query: jina is awesome" --embd-output-format json 2>/dev/null
```
## Remarks
### Consistency wrt. `AutoModel.from_pretrained`
To get fully consistent results as if you were [using `AutoModel.from_pretrained("jinaai/jina-embeddings-v4")...`](https://huggingface.co/jinaai/jina-embeddings-v4#usage), you need to be **very careful** about the prefixes and manually add them to your GGUF model inputs. Here's a reference table:
| Input Type | Task | `prompt_name` (Role) | Actual Input Processed by Model |
|------------|------|-------------|-------------------------------|
| **Text** | `retrieval` | `query` (default) | `Query: {original_text}` |
| **Text** | `retrieval` | `passage` | `Passage: {original_text}` |
| **Text** | `text-matching` | `query` (default) | `Query: {original_text}` |
| **Text** | `text-matching` | `passage` | `Query: {original_text}` ⚠️ |
| **Text** | `code` | `query` (default) | `Query: {original_text}` |
| **Text** | `code` | `passage` | `Passage: {original_text}` |
| **Image** | Any task | N/A | `<\|im_start\|>user\n<\|vision_start\|>\<\|image_pad\|>\<\|vision_end\|>Describe the image.\<\|im_end\|>` |
To some users, ⚠️ indicates a somewhat surprising behavior where `prompt_name='passage'` gets overridden to `"Query: "` when using `text-matching` in the original `AutoModel.from_pretrained("jinaai/jina-embeddings-v4")....` However, this is reasonable since `text-matching` is a sentence similarity task with no left/right roles—the inputs are symmetric.
### Matryoshka embeddings
Note, v4 is trained with Matryoshka embeddings, and converting to GGUF doesn't break the Matryoshka feature. Let's say you get embeddings with shape `NxD` - you can simply use `embeddings[:, :truncate_dim]` to get smaller truncated embeddings. Note that not every dimension is trained though. For v4, you can set `truncate_dim` to any of these values: `[128, 256, 512, 1024, 2048]`.
### Quantizations
We use [`llama-quantize`](./quantize.sh) with `imatrix` to quantize models from float16. `imatrix` is generated by `llama-imatrix -m jina-embeddings-v4-text-retrieval-F16.gguf -f calibration_data_v5_rc.txt -ngl 99 --no-ppl -o imatrix-retrieval-512.dat`. `calibration_data_v5_rc.txt` can be found [here](https://gist.github.com/tristandruyen/9e207a95c7d75ddf37525d353e00659c/) and is recommended by Unsloth docs.
Here's the speed and quality evaluation on two nano benchmarks. The higher the better. `IQ3_S` seems to be a good balance between size and speed.
#### Table 1: Tokens per Second on NanoHotpotQA `Documents`
| Quantization | BPW | File Size (GB) | Peak VRAM (GB) | Token/s w FA | Token/s w/o FA |
|------------------|-----------|-----|-----------|--------------|----------------|
| IQ1_S | 2.04 | 0.73 | 4.04 | 3625 | 2050 |
| IQ1_M | 2.19 | 0.79 | 4.09 | 3349 | 1997 |
| IQ2_XXS | 2.44 | 0.88 | 4.19 | 3701 | 2071 |
| IQ2_M | 2.94 | 1.06 | 4.37 | 3407 | 1989 |
| Q2_K | 3.29 | 1.18 | 4.49 | 3173 | 1905 |
| IQ3_XXS | 3.31 | 1.19 | 4.50 | 3668 | 2067 |
| IQ3_XS | 3.59 | 1.29 | 4.60 | 3604 | 2053 |
| IQ3_S | 3.76 | 1.35 | 4.66 | 3599 | 2049 |
| IQ3_M | 3.84 | 1.38 | 4.69 | 3603 | 2053 |
| Q3_K_M | 4.11 | 1.48 | 4.78 | 3450 | 2008 |
| IQ4_NL | 4.72 | 1.69 | 5.00 | 3571 | 2039 |
| IQ4_XS | 4.49 | 1.61 | 4.92 | 3585 | 2046 |
| Q4_K_M | 4.99 | 1.79 | 5.10 | 3558 | 2045 |
| Q5_K_S | 5.61 | 2.02 | 5.32 | 3567 | 2044 |
| Q5_K_M | 5.75 | 2.07 | 5.38 | 3528 | 2034 |
| Q6_K | 6.56 | 2.36 | 5.66 | 3334 | 1981 |
| Q8_0 | 8.50 | 3.05 | 6.36 | 3767 | 2101 |
| F16 | 16.00 | 5.75 | 9.70 | 3399 | 2023 |
| v3 (Transformers) | 16.00 | 1.10 | 2.82 | | 16505 |
| v4 (Transformers) | 16.00 | 7.40 | 14.45 | | 1865 |
System info:
```
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 36 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 37/37 layers to GPU
load_tensors: CUDA0 model buffer size = 3127.61 MiB
load_tensors: CPU_Mapped model buffer size = 315.30 MiB
...................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 4096
llama_context: n_ubatch = 4096
llama_context: causal_attn = 1
llama_context: flash_attn = 1 // 1 for w/ FA in the table; 0 for w/o FA
llama_context: kv_unified = true
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (128000) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.59 MiB
llama_kv_cache_unified: CUDA0 KV buffer size = 144.00 MiB
llama_kv_cache_unified: size = 144.00 MiB ( 4096 cells, 36 layers, 1/1 seqs), K (f16): 72.00 MiB, V (f16): 72.00 MiB
llama_context: CUDA0 compute buffer size = 2470.16 MiB
llama_context: CUDA_Host compute buffer size = 96.17 MiB
llama_context: graph nodes = 1234
llama_context: graph splits = 2
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
system_info: n_threads = 4 (n_threads_batch = 4) / 8 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: n_tokens in batch = 0
main: number of embeddings = 5090
```
#### Table 2: NDCG@5
| Quantization | NanoHotpotQA | NanoFiQA2018 | NanoArguAna | NanoNFCorpus | NanoSciFact | Δ to v3 (HotpotQA) | Δ to v4 (HotpotQA) | Δ to v3 (FiQA2018) | Δ to v4 (FiQA2018) | Δ to v3 (ArguAna) | Δ to v4 (ArguAna) | Δ to v3 (NFCorpus) | Δ to v4 (NFCorpus) | Δ to v3 (SciFact) | Δ to v4 (SciFact) |
|------------------|--------------|--------------|-------------|--------------|-------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|
| IQ1_S | 0.6369 | 0.3178 | 0.3798 | 0.2933 | 0.5934 | -14% | -20% | -38% | -43% | -17% | -22% | -28% | -33% | -24% | -25% |
| IQ1_M | 0.6316 | 0.3313 | 0.5167 | 0.3256 | 0.6114 | -15% | -21% | -36% | -41% | +12% | +7% | -20% | -25% | -22% | -23% |
| IQ2_XXS | 0.7236 | 0.4582 | 0.4584 | 0.4067 | 0.7392 | -2% | -9% | -11% | -18% | -0% | -5% | -0% | -7% | -5% | -7% |
| IQ2_M | 0.7427 | 0.5869 | 0.5090 | 0.4468 | 0.7880 | +0% | -7% | +14% | +5% | +11% | +5% | +10% | +3% | +1% | -1% |
| Q2_K | 0.7683 | 0.5744 | 0.5168 | 0.4183 | 0.7546 | +4% | -4% | +12% | +3% | +12% | +7% | +3% | -4% | -4% | -5% |
| IQ3_XXS | 0.7780 | 0.5991 | 0.4811 | 0.4267 | 0.7610 | +5% | -2% | +16% | +8% | +5% | -1% | +5% | -2% | -3% | -4% |
| IQ3_XS | 0.7727 | 0.5615 | 0.5195 | 0.4439 | 0.7726 | +5% | -3% | +9% | +1% | +13% | +7% | +9% | +2% | -1% | -3% |
| IQ3_S | 0.8002 | 0.5505 | 0.4886 | 0.4381 | 0.7690 | +8% | +0% | +7% | -1% | +6% | +1% | +8% | +1% | -2% | -3% |
| IQ3_M | 0.8106 | 0.5387 | 0.5091 | 0.4462 | 0.7760 | +10% | +2% | +5% | -3% | +11% | +5% | +10% | +3% | -1% | -3% |
| Q3_K_M | 0.7567 | 0.5267 | 0.4486 | 0.4092 | 0.7775 | +2% | -5% | +2% | -5% | -2% | -7% | +1% | -6% | -1% | -2% |
| IQ4_NL | 0.7930 | 0.5598 | 0.4911 | 0.4285 | 0.7794 | +7% | -1% | +9% | +0% | +7% | +1% | +5% | -2% | -0% | -2% |
| IQ4_XS | 0.7979 | 0.5627 | 0.4947 | 0.4258 | 0.7789 | +8% | +0% | +9% | +1% | +8% | +2% | +5% | -2% | -0% | -2% |
| Q4_K_M | 0.8029 | 0.5569 | 0.4883 | 0.4226 | 0.7877 | +9% | +1% | +8% | +0% | +6% | +1% | +4% | -3% | +1% | -1% |
| Q5_K_S | 0.7969 | 0.5581 | 0.4721 | 0.4288 | 0.7842 | +8% | +0% | +8% | +0% | +3% | -3% | +5% | -1% | +0% | -2% |
| Q5_K_M | 0.7927 | 0.5601 | 0.4745 | 0.4247 | 0.7873 | +7% | -1% | +9% | +1% | +3% | -2% | +4% | -2% | +1% | -1% |
| Q6_K | 0.7951 | 0.5636 | 0.4822 | 0.4337 | 0.7846 | +8% | +0% | +10% | +1% | +5% | -0% | +7% | -0% | +0% | -1% |
| Q8_0 | 0.7938 | 0.5687 | 0.4784 | 0.4335 | 0.7851 | +7% | +0% | +11% | +2% | +4% | -1% | +7% | -0% | +0% | -1% |
| F16 | 0.7940 | 0.5610 | 0.4931 | 0.4343 | 0.7963 | +7% | +0% | +9% | +1% | +7% | +2% | +7% | -0% | +2% | +0% |
| v3 (Transformers) | 0.7393 | 0.5144 | 0.4600 | 0.4068 | 0.7820 | +0% | -7% | +0% | -8% | +0% | -5% | +0% | -6% | +0% | -2% |
| v4 (Transformers) | 0.7977 | 0.5571 | 0.4844 | 0.4351 | 0.7963 | +8% | +0% | +8% | +0% | +5% | +0% | +7% | +0% | +2% | +0% |
|