# Jina Embeddings V4 Model implementation was inspired by the ColPali codebase: # https://github.com/illuin-tech/colpali import os from dataclasses import dataclass from enum import Enum from functools import partial from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast import numpy as np import torch from huggingface_hub import snapshot_download from peft import PeftModel from peft.utils.hotswap import hotswap_adapter from PIL import Image from torch import nn from torch.utils.data import DataLoader from tqdm import tqdm from transformers import BatchFeature from transformers.models.qwen2_5_vl import (Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor) from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config class PromptType(str, Enum): query = "query" passage = "passage" class TaskType(str, Enum): retrieval = "retrieval" code = "code" text_matching = "text-matching" PREFIX_DICT = {"query": "Query", "passage": "Passage"} TRUNCATE_DIMS = [128, 256, 512, 1024] VECTOR_TYPES = ["single_vector", "multi_vector"] class JinaEmbeddingsV4Processor(Qwen2_5_VLProcessor): def __init__(self, *args, **kwargs) -> None: Qwen2_5_VLProcessor.__init__(self, *args, **kwargs) self.assistant_prefix_len = 58 self.text_max_length = 8192 def process_images( self, images: Union[List[Image.Image], List[List[Image.Image]]], ) -> BatchFeature: if isinstance(images[0], list): images = cast(List[List[Image.Image]], images) text_doc = [] for i in range(len(images)): conversation = [ {"role": "user", "content": [{"type": "image"}] * len(images[i])} ] template = self.apply_chat_template( conversation, add_generation_prompt=False ) text_doc.append(template[self.assistant_prefix_len :]) else: images = cast(List[Image.Image], images) text_doc = [ "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n" ] * len(images) # The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt") # type: ignore # Separate pixel_values for each image offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2] # Pad pixel_values to the same length to be able to make it into a tensor pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist()) max_length = max([len(pv) for pv in pixel_values]) pixel_values = [ torch.cat( [ pv, torch.zeros( (max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device, ), ] ) for pv in pixel_values ] batch_doc["pixel_values"] = torch.stack(pixel_values) return batch_doc def process_texts( self, texts: List[str], max_length: Optional[int] = None, prefix: Optional[str] = None, padding: Optional[str] = None, ) -> BatchFeature: max_length = ( self.text_max_length if max_length is None else min(max_length, self.text_max_length) ) padded_texts: List[str] = [] for text in texts: if prefix: text = f"{prefix}: {text}" padded_texts.append(text) text_batch = self( text=padded_texts, return_tensors="pt", padding=padding or "longest", max_length=max_length, truncation=True, ) return text_batch @dataclass class JinaEmbeddingsV4ModelOutput: """ Base class for the Hybrid Model outputs. Args: vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM. single_vec_emb (torch.Tensor, optional): Single-vector embeddings. multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings. """ vlm_last_hidden_states: Optional[torch.Tensor] = None single_vec_emb: Optional[torch.Tensor] = None multi_vec_emb: Optional[torch.Tensor] = None class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): config_class = JinaEmbeddingsV4Config main_input_name: ClassVar[str] = "doc_input_ids" def __init__(self, config: JinaEmbeddingsV4Config): Qwen2_5_VLForConditionalGeneration.__init__(self, config) self._init_projection_layers(config) self.post_init() self.processor = JinaEmbeddingsV4Processor.from_pretrained( self.name_or_path, trust_remote_code=True ) self.single_vector_projector_dim = config.single_vector_projector_dim self.multi_vector_projector_dim = config.multi_vector_projector_dim def get_last_hidden_states( self, input_ids: torch.LongTensor, attention_mask: torch.Tensor, **kwargs, ) -> torch.Tensor: if "pixel_values" in kwargs: offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2] kwargs["pixel_values"] = torch.cat( [pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0 ) position_ids, rope_deltas = super().get_rope_index( input_ids=input_ids, image_grid_thw=kwargs.get("image_grid_thw", None), attention_mask=attention_mask, ) kwargs["output_hidden_states"] = True outputs = super().forward( input_ids, attention_mask, **kwargs, position_ids=position_ids, rope_deltas=rope_deltas, use_cache=False, ) hidden_states = outputs.hidden_states if not hidden_states: raise ValueError("Hidden states not found in model output") return hidden_states[-1] def _init_projection_layers(self, config) -> None: """ Initializes projection layers. """ self.config.single_vector_projector_dim = config.single_vector_projector_dim self.config.multi_vector_projector_dim = config.multi_vector_projector_dim self.single_vector_projector = nn.Linear( in_features=self.config.hidden_size, out_features=self.config.single_vector_projector_dim, ) self.multi_vector_projector = nn.Linear( in_features=self.config.hidden_size, out_features=self.config.multi_vector_projector_dim, ) def project_to_single_vector_embeddings( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, input_ids: Optional[torch.LongTensor] = None, ) -> torch.Tensor: """ Project the hidden states to single-vector embeddings. """ if self._input_has_image(input_ids[0]): # got document image img_start_positions = torch.where(input_ids == self.config.vision_start_token_id)[1] img_end_positions = torch.where(input_ids == self.config.vision_end_token_id)[1] batch_size, seq_len = input_ids.shape position_indices = torch.arange(seq_len, device=input_ids.device).expand(batch_size, -1) image_mask = (position_indices >= img_start_positions.unsqueeze(1)) & (position_indices <= img_end_positions.unsqueeze(1)) masked_hidden_states = hidden_states * image_mask.unsqueeze(-1) pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum(dim=1, keepdim=True) else: # got query text pooled_output = torch.sum( hidden_states * attention_mask.unsqueeze(-1), dim=1 ) / torch.sum(attention_mask, dim=1, keepdim=True) single_vec_emb = self.single_vector_projector(pooled_output) return torch.nn.functional.normalize(single_vec_emb, dim=-1) def project_to_multi_vector_embeddings( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, ) -> torch.Tensor: """ Project the hidden states to multi-vector embeddings. """ multi_vec_emb = self.multi_vector_projector(hidden_states) multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1) return multi_vec_emb * attention_mask.unsqueeze(-1) def _input_has_image(self, input_ids): return self.config.vision_start_token_id in input_ids def forward( self, input_ids: torch.LongTensor, attention_mask: torch.Tensor, output_vlm_last_hidden_states: bool = False, **kwargs, ) -> JinaEmbeddingsV4ModelOutput: """ Forward pass through the model. Returns both single-vector and multi-vector embeddings. Args: input_ids (torch.Tensor): The input tokens tensor. attention_mask (torch.Tensor): The attention mask tensor. Returns: JinaEmbeddingsV4ModelOutput: single_vector (torch.Tensor): Single-vector embeddings of shape (batch_size, dim). multi_vector (torch.Tensor): Multi-vector embeddings of shape (batch_size, num_tokens, dim). """ # Forward pass through the VLM hidden_states = self.get_last_hidden_states( input_ids=input_ids, attention_mask=attention_mask, **kwargs ) # (batch_size, seq_length, hidden_size) # Compute the embeddings single_vec_emb = self.project_to_single_vector_embeddings( hidden_states, attention_mask, input_ids=input_ids ) multi_vec_emb = self.project_to_multi_vector_embeddings( hidden_states, attention_mask ) return JinaEmbeddingsV4ModelOutput( vlm_last_hidden_states=( hidden_states if output_vlm_last_hidden_states else None ), single_vec_emb=single_vec_emb, multi_vec_emb=multi_vec_emb, ) def _process_batches( self, data: List[Union[str, Image.Image]], processor_fn: Callable, desc: str, vector_type: str = "single_vector", return_numpy: bool = False, batch_size: int = 32, truncate_dim: Optional[int] = None, ) -> Union[np.ndarray, List[torch.Tensor]]: dataloader = DataLoader( dataset=data, batch_size=batch_size, shuffle=False, collate_fn=processor_fn, ) results = [] self.eval() for batch in tqdm(dataloader, desc=desc): with torch.no_grad(): batch = {k: v.to(self.device) for k, v in batch.items()} with torch.autocast(device_type=torch.device(self.device).type): embeddings = self(**batch) if vector_type == "single_vector": embeddings = embeddings.single_vec_emb if truncate_dim is not None: embeddings = embeddings[:, :truncate_dim] else: embeddings = embeddings.multi_vec_emb results.append( embeddings.cpu() if return_numpy else list(torch.unbind(embeddings)) ) if return_numpy: return np.concatenate([result.numpy() for result in results], axis=0) return [item for sublist in results for item in sublist] def _validate_encoding_params( self, vector_type: Optional[str] = None, truncate_dim: Optional[int] = None, prompt_name: Optional[str] = None, ) -> Dict[str, Any]: encode_kwargs = {} if prompt_name is not None: if prompt_name not in PREFIX_DICT: raise ValueError( f"Invalid prompt_name: {prompt_name}. Must be one of {list(PREFIX_DICT.keys())}." ) else: encode_kwargs["prefix"] = ( PREFIX_DICT[prompt_name] if self.task != TaskType.text_matching else PREFIX_DICT["query"] ) vector_type = vector_type or "single_vector" if vector_type not in VECTOR_TYPES: raise ValueError( f"Invalid vector_type: {vector_type}. Must be one of {VECTOR_TYPES}." ) else: encode_kwargs["vector_type"] = vector_type truncate_dim = truncate_dim or self.config.truncate_dim if truncate_dim is not None and truncate_dim not in TRUNCATE_DIMS: raise ValueError( f"Invalid truncate_dim: {truncate_dim}. Must be one of {TRUNCATE_DIMS}." ) else: encode_kwargs["truncate_dim"] = truncate_dim return encode_kwargs def encode_texts( self, texts: List[str], max_length: int = 8192, batch_size: int = 8, vector_type: Optional[str] = None, return_numpy: bool = False, truncate_dim: Optional[int] = None, prompt_name: Optional[str] = None, ) -> List[torch.Tensor]: """ Encodes a list of texts into embeddings. Args: texts: List of text strings to encode max_length: Maximum token length for text processing batch_size: Number of texts to process at once vector_type: Type of embedding vector to generate ('single_vector' or 'multi_vector') return_numpy: Whether to return numpy arrays instead of torch tensors truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024) prompt_name: Type of text being encoded ('query' or 'passage') Returns: List of text embeddings as tensors or numpy arrays """ prompt_name = prompt_name or "query" encode_kwargs = self._validate_encoding_params( vector_type, truncate_dim, prompt_name ) processor_fn = partial( self.processor.process_texts, max_length=max_length, prefix=encode_kwargs.pop("prefix"), ) embeddings = self._process_batches( data=texts, processor_fn=processor_fn, desc="Encoding texts...", return_numpy=return_numpy, batch_size=batch_size, **encode_kwargs, ) return embeddings def encode_images( self, images: List[Image.Image], batch_size: int = 8, vector_type: Optional[str] = None, return_numpy: bool = False, truncate_dim: Optional[int] = None, max_pixels: Optional[int] = None, ) -> List[torch.Tensor]: """ Encodes a list of images into embeddings. Args: images: List of PIL images to encode batch_size: Number of images to process at once vector_type: Type of embedding vector to generate ('single_vector' or 'multi_vector') return_numpy: Whether to return numpy arrays instead of torch tensors truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024) max_pixels: Maximum number of pixels to process per image Returns: List of image embeddings as tensors or numpy arrays """ if max_pixels: default_max_pixels = self.processor.image_processor.max_pixels self.processor.image_processor.max_pixels = max_pixels # change during encoding encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim) embeddings = self._process_batches( data=images, processor_fn=self.processor.process_images, desc="Encoding images...", batch_size=batch_size, return_numpy=return_numpy, **encode_kwargs, ) if max_pixels: self.processor.image_processor.max_pixels = default_max_pixels return embeddings @classmethod def from_pretrained( cls, pretrained_model_name_or_path, *args, **kwargs, ): """ Loads a pretrained model and configures it with the appropriate task adapter (`retrieval` by default). """ if "torch_dtype" not in kwargs: kwargs["torch_dtype"] = "auto" task_value = kwargs.pop("task", "retrieval") try: task = TaskType(task_value) except ValueError: valid_tasks = [t.value for t in TaskType] raise ValueError( f"Invalid task: {task_value}. Must be one of {valid_tasks}." ) base_model = super().from_pretrained( pretrained_model_name_or_path, *args, **kwargs ) # Configure adapter directory if os.path.isdir(base_model.name_or_path): adapter_dir = os.path.join(base_model.name_or_path, "adapters") else: adapter_cache_path = snapshot_download( repo_id=base_model.name_or_path, allow_patterns=["adapters/*"] ) adapter_dir = os.path.join(adapter_cache_path, "adapters") base_model.adapter_dir = adapter_dir base_model.task = task # Create the PEFT model with the requested task adapter peft_model = PeftModel.from_pretrained( base_model, os.path.join(adapter_dir, task.value) ) # Add set_task method to the PEFT model instance def set_task_method(self, task: Union[str, TaskType]): """ Set the task adapter for the model. Args: task (Union[str, TaskType]): The task name. Must be one of TaskType values or one of ['retrieval', 'text-matching', 'code'] """ if isinstance(task, str): try: task = TaskType(task) except ValueError: valid_tasks = [t.value for t in TaskType] raise ValueError( f"Invalid task: {task}. Must be one of {valid_tasks}" ) if self.model.task != task: adapter_path = os.path.join(self.adapter_dir, task.value) hotswap_adapter(self, adapter_path, adapter_name="default") self.model.task = task def get_task_method(self): """ Get the task adapter for the model. """ return self.model.task.value # Bind the methods to the instance peft_model.set_task = set_task_method.__get__(peft_model, type(peft_model)) peft_model.get_task = get_task_method.__get__(peft_model, type(peft_model)) return peft_model