fix: add missing module
Browse files- README.md +1 -1
- modeling_xlm_roberta.py +214 -0
README.md
CHANGED
|
@@ -90,7 +90,7 @@ results = model.rank(query, documents, return_documents=True, top_k=3)
|
|
| 90 |
from transformers import AutoModelForSequenceClassification
|
| 91 |
|
| 92 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 93 |
-
'jinaai/jina-reranker-v2-base-multilingual',
|
| 94 |
)
|
| 95 |
|
| 96 |
# Example query and documents
|
|
|
|
| 90 |
from transformers import AutoModelForSequenceClassification
|
| 91 |
|
| 92 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 93 |
+
'jinaai/jina-reranker-v2-base-multilingual', trust_remote_code=True
|
| 94 |
)
|
| 95 |
|
| 96 |
# Example query and documents
|
modeling_xlm_roberta.py
CHANGED
|
@@ -902,3 +902,217 @@ class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
|
| 902 |
hidden_states=outputs.hidden_states,
|
| 903 |
attentions=outputs.attentions,
|
| 904 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 902 |
hidden_states=outputs.hidden_states,
|
| 903 |
attentions=outputs.attentions,
|
| 904 |
)
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
@torch.inference_mode()
|
| 908 |
+
def compute_score(
|
| 909 |
+
self,
|
| 910 |
+
sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]],
|
| 911 |
+
batch_size: int = 32,
|
| 912 |
+
max_length: Optional[int] = None,
|
| 913 |
+
) -> List[float]:
|
| 914 |
+
|
| 915 |
+
if not hasattr(self, "_tokenizer"):
|
| 916 |
+
from transformers import AutoTokenizer
|
| 917 |
+
|
| 918 |
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
| 919 |
+
self.name_or_path, trust_remote_code=True
|
| 920 |
+
)
|
| 921 |
+
|
| 922 |
+
assert isinstance(sentence_pairs, list)
|
| 923 |
+
if isinstance(sentence_pairs[0], str):
|
| 924 |
+
sentence_pairs = [sentence_pairs]
|
| 925 |
+
|
| 926 |
+
all_scores = []
|
| 927 |
+
for start_index in range(
|
| 928 |
+
0, len(sentence_pairs), batch_size
|
| 929 |
+
):
|
| 930 |
+
sentences_batch = sentence_pairs[
|
| 931 |
+
start_index : start_index + batch_size
|
| 932 |
+
]
|
| 933 |
+
inputs = self._tokenizer(
|
| 934 |
+
sentences_batch,
|
| 935 |
+
padding=True,
|
| 936 |
+
truncation=True,
|
| 937 |
+
return_tensors='pt',
|
| 938 |
+
max_length=max_length,
|
| 939 |
+
).to(self.device)
|
| 940 |
+
scores = (
|
| 941 |
+
self.forward(**inputs, return_dict=True)
|
| 942 |
+
.logits.view(
|
| 943 |
+
-1,
|
| 944 |
+
)
|
| 945 |
+
.float()
|
| 946 |
+
)
|
| 947 |
+
all_scores.extend(scores.cpu().numpy().tolist())
|
| 948 |
+
|
| 949 |
+
if len(all_scores) == 1:
|
| 950 |
+
return all_scores[0]
|
| 951 |
+
return all_scores
|
| 952 |
+
|
| 953 |
+
def predict(
|
| 954 |
+
self,
|
| 955 |
+
sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]],
|
| 956 |
+
batch_size: int = 32,
|
| 957 |
+
max_length: Optional[int] = None,
|
| 958 |
+
) -> List[float]:
|
| 959 |
+
# used for beir evaluation
|
| 960 |
+
return self.compute_score(sentence_pairs, batch_size=batch_size, max_length=max_length)
|
| 961 |
+
|
| 962 |
+
def rerank(
|
| 963 |
+
self,
|
| 964 |
+
query: str,
|
| 965 |
+
documents: List[str],
|
| 966 |
+
batch_size: int = 32,
|
| 967 |
+
max_length: int = 1024,
|
| 968 |
+
max_query_length: int = 512,
|
| 969 |
+
overlap_tokens: int = 80,
|
| 970 |
+
top_n: Optional[int] = None,
|
| 971 |
+
**kwargs,
|
| 972 |
+
):
|
| 973 |
+
assert max_length >= max_query_length * 2, (
|
| 974 |
+
f'max_length ({max_length}) must be greater than or equal to '
|
| 975 |
+
f'max_query_length ({max_query_length}) * 2'
|
| 976 |
+
)
|
| 977 |
+
|
| 978 |
+
if not hasattr(self, "_tokenizer"):
|
| 979 |
+
from transformers import AutoTokenizer
|
| 980 |
+
|
| 981 |
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
| 982 |
+
self.name_or_path, trust_remote_code=True
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
# preproc of tokenization
|
| 986 |
+
sentence_pairs, sentence_pairs_pids = reranker_tokenize_preproc(
|
| 987 |
+
query,
|
| 988 |
+
documents,
|
| 989 |
+
tokenizer=self._tokenizer,
|
| 990 |
+
max_length=max_length,
|
| 991 |
+
max_query_length=max_query_length,
|
| 992 |
+
overlap_tokens=overlap_tokens,
|
| 993 |
+
)
|
| 994 |
+
|
| 995 |
+
tot_scores = []
|
| 996 |
+
with torch.no_grad():
|
| 997 |
+
for k in range(0, len(sentence_pairs), batch_size):
|
| 998 |
+
batch = self._tokenizer.pad(
|
| 999 |
+
sentence_pairs[k : k + batch_size],
|
| 1000 |
+
padding=True,
|
| 1001 |
+
max_length=max_length,
|
| 1002 |
+
pad_to_multiple_of=None,
|
| 1003 |
+
return_tensors="pt",
|
| 1004 |
+
)
|
| 1005 |
+
batch_on_device = {k: v.to(self.device) for k, v in batch.items()}
|
| 1006 |
+
scores = (
|
| 1007 |
+
self.forward(**batch_on_device, return_dict=True)
|
| 1008 |
+
.logits.view(
|
| 1009 |
+
-1,
|
| 1010 |
+
)
|
| 1011 |
+
.float()
|
| 1012 |
+
)
|
| 1013 |
+
scores = torch.sigmoid(scores)
|
| 1014 |
+
tot_scores.extend(scores.cpu().numpy().tolist())
|
| 1015 |
+
|
| 1016 |
+
# ranking
|
| 1017 |
+
merge_scores = [0 for _ in range(len(documents))]
|
| 1018 |
+
for pid, score in zip(sentence_pairs_pids, tot_scores):
|
| 1019 |
+
merge_scores[pid] = max(merge_scores[pid], score)
|
| 1020 |
+
|
| 1021 |
+
merge_scores_argsort = np.argsort(merge_scores)[::-1]
|
| 1022 |
+
sorted_documents = []
|
| 1023 |
+
sorted_scores = []
|
| 1024 |
+
for mid in merge_scores_argsort:
|
| 1025 |
+
sorted_scores.append(merge_scores[mid])
|
| 1026 |
+
sorted_documents.append(documents[mid])
|
| 1027 |
+
|
| 1028 |
+
top_n = min(top_n or len(sorted_documents), len(sorted_documents))
|
| 1029 |
+
|
| 1030 |
+
return [
|
| 1031 |
+
{
|
| 1032 |
+
'document': sorted_documents[i],
|
| 1033 |
+
'relevance_score': sorted_scores[i],
|
| 1034 |
+
'index': merge_scores_argsort[i],
|
| 1035 |
+
}
|
| 1036 |
+
for i in range(top_n)
|
| 1037 |
+
]
|
| 1038 |
+
|
| 1039 |
+
|
| 1040 |
+
def reranker_tokenize_preproc(
|
| 1041 |
+
query: str,
|
| 1042 |
+
passages: List[str],
|
| 1043 |
+
tokenizer=None,
|
| 1044 |
+
max_length: int = 1024,
|
| 1045 |
+
max_query_length: int = 512,
|
| 1046 |
+
overlap_tokens: int = 80,
|
| 1047 |
+
):
|
| 1048 |
+
from copy import deepcopy
|
| 1049 |
+
|
| 1050 |
+
assert tokenizer is not None, "Please provide a valid tokenizer for tokenization!"
|
| 1051 |
+
sep_id = tokenizer.sep_token_id
|
| 1052 |
+
|
| 1053 |
+
def _merge_inputs(chunk1_raw, chunk2):
|
| 1054 |
+
chunk1 = deepcopy(chunk1_raw)
|
| 1055 |
+
chunk1['input_ids'].append(sep_id)
|
| 1056 |
+
chunk1['input_ids'].extend(chunk2['input_ids'])
|
| 1057 |
+
chunk1['input_ids'].append(sep_id)
|
| 1058 |
+
chunk1['attention_mask'].append(chunk2['attention_mask'][0])
|
| 1059 |
+
chunk1['attention_mask'].extend(chunk2['attention_mask'])
|
| 1060 |
+
chunk1['attention_mask'].append(chunk2['attention_mask'][-1])
|
| 1061 |
+
if 'token_type_ids' in chunk1:
|
| 1062 |
+
token_type_ids = [1 for _ in range(len(chunk2['token_type_ids']) + 2)]
|
| 1063 |
+
chunk1['token_type_ids'].extend(token_type_ids)
|
| 1064 |
+
return chunk1
|
| 1065 |
+
|
| 1066 |
+
# Note: the long query will be truncated to 256 tokens by default
|
| 1067 |
+
query_inputs = tokenizer.encode_plus(
|
| 1068 |
+
query, truncation=True, padding=False, max_length=max_query_length
|
| 1069 |
+
)
|
| 1070 |
+
|
| 1071 |
+
max_passage_inputs_length = max_length - len(query_inputs['input_ids']) - 2
|
| 1072 |
+
# assert (
|
| 1073 |
+
# max_passage_inputs_length > 100
|
| 1074 |
+
# ), "Your query is too long! Please make sure your query less than 500 tokens!"
|
| 1075 |
+
|
| 1076 |
+
overlap_tokens_implt = min(overlap_tokens, max_passage_inputs_length // 4)
|
| 1077 |
+
|
| 1078 |
+
res_merge_inputs = []
|
| 1079 |
+
res_merge_inputs_pids = []
|
| 1080 |
+
for pid, passage in enumerate(passages):
|
| 1081 |
+
passage_inputs = tokenizer.encode_plus(
|
| 1082 |
+
passage,
|
| 1083 |
+
truncation=False,
|
| 1084 |
+
padding=False,
|
| 1085 |
+
add_special_tokens=False,
|
| 1086 |
+
max_length=0,
|
| 1087 |
+
)
|
| 1088 |
+
passage_inputs_length = len(passage_inputs['input_ids'])
|
| 1089 |
+
|
| 1090 |
+
if passage_inputs_length <= max_passage_inputs_length:
|
| 1091 |
+
qp_merge_inputs = _merge_inputs(query_inputs, passage_inputs)
|
| 1092 |
+
res_merge_inputs.append(qp_merge_inputs)
|
| 1093 |
+
res_merge_inputs_pids.append(pid)
|
| 1094 |
+
else:
|
| 1095 |
+
start_id = 0
|
| 1096 |
+
while start_id < passage_inputs_length:
|
| 1097 |
+
end_id = start_id + max_passage_inputs_length
|
| 1098 |
+
# make sure the length of the last chunk is `max_passage_inputs_length`
|
| 1099 |
+
if end_id >= passage_inputs_length:
|
| 1100 |
+
sub_passage_inputs = {
|
| 1101 |
+
k: v[-max_passage_inputs_length:]
|
| 1102 |
+
for k, v in passage_inputs.items()
|
| 1103 |
+
}
|
| 1104 |
+
else:
|
| 1105 |
+
sub_passage_inputs = {
|
| 1106 |
+
k: v[start_id:end_id] for k, v in passage_inputs.items()
|
| 1107 |
+
}
|
| 1108 |
+
start_id = (
|
| 1109 |
+
end_id - overlap_tokens_implt
|
| 1110 |
+
if end_id < passage_inputs_length
|
| 1111 |
+
else end_id
|
| 1112 |
+
)
|
| 1113 |
+
|
| 1114 |
+
qp_merge_inputs = _merge_inputs(query_inputs, sub_passage_inputs)
|
| 1115 |
+
res_merge_inputs.append(qp_merge_inputs)
|
| 1116 |
+
res_merge_inputs_pids.append(pid)
|
| 1117 |
+
|
| 1118 |
+
return res_merge_inputs, res_merge_inputs_pids
|