|  | #!/bin/bash | 
					
						
						|  | set -x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | export VLLM_ATTENTION_BACKEND=XFORMERS | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | while [[ $# -gt 0 ]]; do | 
					
						
						|  | case $1 in | 
					
						
						|  | --model) | 
					
						
						|  | MODEL_PATH="$2" | 
					
						
						|  | shift 2 | 
					
						
						|  | ;; | 
					
						
						|  | *) | 
					
						
						|  | break | 
					
						
						|  | ;; | 
					
						
						|  | esac | 
					
						
						|  | done | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if [ -z "$MODEL_PATH" ]; then | 
					
						
						|  | MODEL_PATH="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | 
					
						
						|  | fi | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | python3 -m verl.trainer.main_ppo \ | 
					
						
						|  | algorithm.adv_estimator=grpo \ | 
					
						
						|  | data.train_files=$HOME/deepscaler/data/train.parquet \ | 
					
						
						|  | data.val_files=$HOME/deepscaler/data/aime.parquet \ | 
					
						
						|  | data.train_batch_size=128 \ | 
					
						
						|  | data.val_batch_size=512 \ | 
					
						
						|  | data.max_prompt_length=1024 \ | 
					
						
						|  | data.max_response_length=8192 \ | 
					
						
						|  | actor_rollout_ref.model.path=$MODEL_PATH  \ | 
					
						
						|  | actor_rollout_ref.actor.optim.lr=1e-6 \ | 
					
						
						|  | actor_rollout_ref.model.use_remove_padding=True \ | 
					
						
						|  | actor_rollout_ref.actor.ppo_mini_batch_size=64 \ | 
					
						
						|  | actor_rollout_ref.actor.use_dynamic_bsz=True \ | 
					
						
						|  | actor_rollout_ref.actor.ppo_max_token_len_per_gpu=32768 \ | 
					
						
						|  | actor_rollout_ref.actor.use_kl_loss=True \ | 
					
						
						|  | actor_rollout_ref.actor.kl_loss_coef=0.001 \ | 
					
						
						|  | actor_rollout_ref.actor.kl_loss_type=low_var_kl \ | 
					
						
						|  | actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \ | 
					
						
						|  | actor_rollout_ref.model.enable_gradient_checkpointing=True \ | 
					
						
						|  | actor_rollout_ref.actor.fsdp_config.param_offload=False \ | 
					
						
						|  | actor_rollout_ref.actor.fsdp_config.grad_offload=False \ | 
					
						
						|  | actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ | 
					
						
						|  | actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ | 
					
						
						|  | actor_rollout_ref.rollout.name=vllm \ | 
					
						
						|  | actor_rollout_ref.rollout.temperature=0.6 \ | 
					
						
						|  | actor_rollout_ref.rollout.val_temperature=0.6 \ | 
					
						
						|  | actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \ | 
					
						
						|  | actor_rollout_ref.rollout.n=8 \ | 
					
						
						|  | actor_rollout_ref.rollout.n_val=8 \ | 
					
						
						|  | actor_rollout_ref.ref.fsdp_config.param_offload=True \ | 
					
						
						|  | algorithm.kl_ctrl.kl_coef=0.001 \ | 
					
						
						|  | trainer.critic_warmup=0 \ | 
					
						
						|  | trainer.logger=['wandb'] \ | 
					
						
						|  | trainer.project_name='deepscaler' \ | 
					
						
						|  | trainer.experiment_name='deepscaler-1.5b-8k' \ | 
					
						
						|  | +trainer.val_before_train=True \ | 
					
						
						|  | trainer.n_gpus_per_node=8 \ | 
					
						
						|  | trainer.nnodes=1 \ | 
					
						
						|  | trainer.save_freq=20 \ | 
					
						
						|  | trainer.test_freq=20 \ | 
					
						
						|  | trainer.default_hdfs_dir=null \ | 
					
						
						|  | trainer.total_epochs=30 "${@:1}" |