Upload folder using huggingface_hub
Browse files- README.md +202 -0
- adapter_config.json +15 -0
- adapter_model.safetensors +3 -0
- checkpoint-1484/README.md +202 -0
- checkpoint-1484/adapter_config.json +15 -0
- checkpoint-1484/adapter_model.safetensors +3 -0
- checkpoint-1484/global_step1484/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1484/global_step1484/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1484/global_step1484/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1484/global_step1484/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1484/global_step1484/mp_rank_00_model_states.pt +3 -0
- checkpoint-1484/latest +1 -0
- checkpoint-1484/rng_state_0.pth +3 -0
- checkpoint-1484/rng_state_1.pth +3 -0
- checkpoint-1484/rng_state_2.pth +3 -0
- checkpoint-1484/rng_state_3.pth +3 -0
- checkpoint-1484/scheduler.pt +3 -0
- checkpoint-1484/trainer_state.json +1076 -0
- checkpoint-1484/training_args.bin +3 -0
- checkpoint-1484/zero_to_fp32.py +760 -0
- logs/events.out.tfevents.1738806841.apolo.2066103.0 +3 -0
- logs/events.out.tfevents.1738813546.apolo.2108330.0 +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +85 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: codellama/CodeLlama-7b-hf
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
adapter_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "codellama/CodeLlama-7b-hf",
|
4 |
+
"encoder_hidden_size": 4096,
|
5 |
+
"inference_mode": true,
|
6 |
+
"num_attention_heads": 32,
|
7 |
+
"num_layers": 32,
|
8 |
+
"num_transformer_submodules": 1,
|
9 |
+
"num_virtual_tokens": 20,
|
10 |
+
"peft_type": "PREFIX_TUNING",
|
11 |
+
"prefix_projection": true,
|
12 |
+
"revision": null,
|
13 |
+
"task_type": "CAUSAL_LM",
|
14 |
+
"token_dim": 4096
|
15 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16bc5a7b19cfae6ebe631d3ec5a64df1f4092a9bd27334ebe7c1c7736249a098
|
3 |
+
size 10485888
|
checkpoint-1484/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: codellama/CodeLlama-7b-hf
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
checkpoint-1484/adapter_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "codellama/CodeLlama-7b-hf",
|
4 |
+
"encoder_hidden_size": 4096,
|
5 |
+
"inference_mode": true,
|
6 |
+
"num_attention_heads": 32,
|
7 |
+
"num_layers": 32,
|
8 |
+
"num_transformer_submodules": 1,
|
9 |
+
"num_virtual_tokens": 20,
|
10 |
+
"peft_type": "PREFIX_TUNING",
|
11 |
+
"prefix_projection": true,
|
12 |
+
"revision": null,
|
13 |
+
"task_type": "CAUSAL_LM",
|
14 |
+
"token_dim": 4096
|
15 |
+
}
|
checkpoint-1484/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16bc5a7b19cfae6ebe631d3ec5a64df1f4092a9bd27334ebe7c1c7736249a098
|
3 |
+
size 10485888
|
checkpoint-1484/global_step1484/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7220a5d92557d0df3d04687fe04e717890d840a9d8c39b734ca57afd81d3b8c
|
3 |
+
size 3272607024
|
checkpoint-1484/global_step1484/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:210a9e497b1bb3a1178457df8659ae0332ab337379a320f7f2042047b6b31883
|
3 |
+
size 3272606832
|
checkpoint-1484/global_step1484/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aaf307245004251c97cdef5a1f4f6dd57854027f3e3be294611716af5484149
|
3 |
+
size 3272606832
|
checkpoint-1484/global_step1484/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:795d96a805714a3f7d30002b8a122d57a6112ba45b90e081b3897f91ea798751
|
3 |
+
size 3272606832
|
checkpoint-1484/global_step1484/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01291585acfd90e533c0c86cbb3e4e2e2cd6cfc2ecad8fa646d5f82bb4e8f485
|
3 |
+
size 2444036868
|
checkpoint-1484/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1484
|
checkpoint-1484/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0463657eb196db696840f1d09b3adadac520fe49264add5251aeb9addf055fc
|
3 |
+
size 15024
|
checkpoint-1484/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ffe320ec96f869bb8919b462c34efb3292a69842530bead39d0d3b341234bd7
|
3 |
+
size 15024
|
checkpoint-1484/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6596162c350ad095f608ad419bda73c8a08939691194e48e6a039213c5867009
|
3 |
+
size 15024
|
checkpoint-1484/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:612d8065c6426c751f372c28c3f621bde42e79eaeade12ce126c4b79412e74e9
|
3 |
+
size 15024
|
checkpoint-1484/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48a72f1f07c0dc1b2913fffde3ec12d88bfb3e89442dc52ba087138ee562d340
|
3 |
+
size 1064
|
checkpoint-1484/trainer_state.json
ADDED
@@ -0,0 +1,1076 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9997473684210526,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1484,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0006736842105263158,
|
13 |
+
"grad_norm": 3.6967623233795166,
|
14 |
+
"learning_rate": 1.3422818791946309e-06,
|
15 |
+
"loss": 2.4093,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.006736842105263158,
|
20 |
+
"grad_norm": 2.5490193367004395,
|
21 |
+
"learning_rate": 1.3422818791946309e-05,
|
22 |
+
"loss": 2.4939,
|
23 |
+
"step": 10
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.013473684210526317,
|
27 |
+
"grad_norm": 0.18483224511146545,
|
28 |
+
"learning_rate": 2.6845637583892618e-05,
|
29 |
+
"loss": 1.1877,
|
30 |
+
"step": 20
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.020210526315789474,
|
34 |
+
"grad_norm": 0.2031693309545517,
|
35 |
+
"learning_rate": 4.026845637583892e-05,
|
36 |
+
"loss": 0.8909,
|
37 |
+
"step": 30
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.026947368421052633,
|
41 |
+
"grad_norm": 0.6876732707023621,
|
42 |
+
"learning_rate": 5.3691275167785237e-05,
|
43 |
+
"loss": 0.7581,
|
44 |
+
"step": 40
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03368421052631579,
|
48 |
+
"grad_norm": 0.09247241914272308,
|
49 |
+
"learning_rate": 6.711409395973155e-05,
|
50 |
+
"loss": 0.7594,
|
51 |
+
"step": 50
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04042105263157895,
|
55 |
+
"grad_norm": 0.1324968934059143,
|
56 |
+
"learning_rate": 8.053691275167784e-05,
|
57 |
+
"loss": 0.7405,
|
58 |
+
"step": 60
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.04715789473684211,
|
62 |
+
"grad_norm": 0.05673883110284805,
|
63 |
+
"learning_rate": 9.395973154362417e-05,
|
64 |
+
"loss": 0.7065,
|
65 |
+
"step": 70
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.053894736842105266,
|
69 |
+
"grad_norm": 0.04617280140519142,
|
70 |
+
"learning_rate": 0.00010738255033557047,
|
71 |
+
"loss": 0.6817,
|
72 |
+
"step": 80
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.06063157894736842,
|
76 |
+
"grad_norm": 0.04381496459245682,
|
77 |
+
"learning_rate": 0.0001208053691275168,
|
78 |
+
"loss": 0.6789,
|
79 |
+
"step": 90
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.06736842105263158,
|
83 |
+
"grad_norm": 0.07428538799285889,
|
84 |
+
"learning_rate": 0.0001342281879194631,
|
85 |
+
"loss": 0.6816,
|
86 |
+
"step": 100
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07410526315789474,
|
90 |
+
"grad_norm": 0.04249708354473114,
|
91 |
+
"learning_rate": 0.00014765100671140942,
|
92 |
+
"loss": 0.6997,
|
93 |
+
"step": 110
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0808421052631579,
|
97 |
+
"grad_norm": 0.05957937240600586,
|
98 |
+
"learning_rate": 0.0001610738255033557,
|
99 |
+
"loss": 0.6807,
|
100 |
+
"step": 120
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.08757894736842105,
|
104 |
+
"grad_norm": 0.03975442424416542,
|
105 |
+
"learning_rate": 0.000174496644295302,
|
106 |
+
"loss": 0.6733,
|
107 |
+
"step": 130
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.09431578947368421,
|
111 |
+
"grad_norm": 0.04079463332891464,
|
112 |
+
"learning_rate": 0.00018791946308724833,
|
113 |
+
"loss": 0.6556,
|
114 |
+
"step": 140
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.10105263157894737,
|
118 |
+
"grad_norm": 0.04245497286319733,
|
119 |
+
"learning_rate": 0.00019985018726591762,
|
120 |
+
"loss": 0.6575,
|
121 |
+
"step": 150
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.10778947368421053,
|
125 |
+
"grad_norm": 0.09695123136043549,
|
126 |
+
"learning_rate": 0.00019835205992509364,
|
127 |
+
"loss": 0.6916,
|
128 |
+
"step": 160
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.11452631578947368,
|
132 |
+
"grad_norm": 0.03505201265215874,
|
133 |
+
"learning_rate": 0.00019685393258426966,
|
134 |
+
"loss": 0.6622,
|
135 |
+
"step": 170
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.12126315789473684,
|
139 |
+
"grad_norm": 0.02820334956049919,
|
140 |
+
"learning_rate": 0.0001953558052434457,
|
141 |
+
"loss": 0.6497,
|
142 |
+
"step": 180
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.128,
|
146 |
+
"grad_norm": 0.04135354235768318,
|
147 |
+
"learning_rate": 0.00019385767790262173,
|
148 |
+
"loss": 0.6671,
|
149 |
+
"step": 190
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.13473684210526315,
|
153 |
+
"grad_norm": 0.031461067497730255,
|
154 |
+
"learning_rate": 0.00019235955056179775,
|
155 |
+
"loss": 0.657,
|
156 |
+
"step": 200
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.1414736842105263,
|
160 |
+
"grad_norm": 0.04208710789680481,
|
161 |
+
"learning_rate": 0.0001908614232209738,
|
162 |
+
"loss": 0.6766,
|
163 |
+
"step": 210
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.1482105263157895,
|
167 |
+
"grad_norm": 3.495147705078125,
|
168 |
+
"learning_rate": 0.00018936329588014982,
|
169 |
+
"loss": 3.9378,
|
170 |
+
"step": 220
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.15494736842105264,
|
174 |
+
"grad_norm": 0.18893112242221832,
|
175 |
+
"learning_rate": 0.00018786516853932586,
|
176 |
+
"loss": 7.1374,
|
177 |
+
"step": 230
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.1616842105263158,
|
181 |
+
"grad_norm": 0.0959916040301323,
|
182 |
+
"learning_rate": 0.00018636704119850189,
|
183 |
+
"loss": 5.8104,
|
184 |
+
"step": 240
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.16842105263157894,
|
188 |
+
"grad_norm": 0.08286964148283005,
|
189 |
+
"learning_rate": 0.0001848689138576779,
|
190 |
+
"loss": 4.7292,
|
191 |
+
"step": 250
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.1751578947368421,
|
195 |
+
"grad_norm": 0.04510454833507538,
|
196 |
+
"learning_rate": 0.00018337078651685393,
|
197 |
+
"loss": 4.9858,
|
198 |
+
"step": 260
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.18189473684210528,
|
202 |
+
"grad_norm": 0.2256896197795868,
|
203 |
+
"learning_rate": 0.00018187265917602997,
|
204 |
+
"loss": 4.7463,
|
205 |
+
"step": 270
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.18863157894736843,
|
209 |
+
"grad_norm": 0.06342379748821259,
|
210 |
+
"learning_rate": 0.00018037453183520602,
|
211 |
+
"loss": 4.517,
|
212 |
+
"step": 280
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.19536842105263158,
|
216 |
+
"grad_norm": 0.07497289776802063,
|
217 |
+
"learning_rate": 0.00017887640449438204,
|
218 |
+
"loss": 4.4052,
|
219 |
+
"step": 290
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.20210526315789473,
|
223 |
+
"grad_norm": 0.08952877670526505,
|
224 |
+
"learning_rate": 0.00017737827715355806,
|
225 |
+
"loss": 3.9614,
|
226 |
+
"step": 300
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.20884210526315788,
|
230 |
+
"grad_norm": 0.044066932052373886,
|
231 |
+
"learning_rate": 0.00017588014981273408,
|
232 |
+
"loss": 4.5861,
|
233 |
+
"step": 310
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.21557894736842106,
|
237 |
+
"grad_norm": 0.08251778781414032,
|
238 |
+
"learning_rate": 0.0001743820224719101,
|
239 |
+
"loss": 4.5163,
|
240 |
+
"step": 320
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.22231578947368422,
|
244 |
+
"grad_norm": 0.04723803699016571,
|
245 |
+
"learning_rate": 0.00017288389513108615,
|
246 |
+
"loss": 4.1904,
|
247 |
+
"step": 330
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.22905263157894737,
|
251 |
+
"grad_norm": 0.09082615375518799,
|
252 |
+
"learning_rate": 0.0001713857677902622,
|
253 |
+
"loss": 4.1982,
|
254 |
+
"step": 340
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.23578947368421052,
|
258 |
+
"grad_norm": 0.04866361245512962,
|
259 |
+
"learning_rate": 0.00016988764044943822,
|
260 |
+
"loss": 3.8506,
|
261 |
+
"step": 350
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.24252631578947367,
|
265 |
+
"grad_norm": 0.04515402019023895,
|
266 |
+
"learning_rate": 0.00016838951310861424,
|
267 |
+
"loss": 4.4254,
|
268 |
+
"step": 360
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.24926315789473685,
|
272 |
+
"grad_norm": 0.14205284416675568,
|
273 |
+
"learning_rate": 0.00016689138576779026,
|
274 |
+
"loss": 4.4111,
|
275 |
+
"step": 370
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.256,
|
279 |
+
"grad_norm": 0.16082021594047546,
|
280 |
+
"learning_rate": 0.0001653932584269663,
|
281 |
+
"loss": 4.1119,
|
282 |
+
"step": 380
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.26273684210526316,
|
286 |
+
"grad_norm": 0.061411116272211075,
|
287 |
+
"learning_rate": 0.00016389513108614235,
|
288 |
+
"loss": 4.059,
|
289 |
+
"step": 390
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.2694736842105263,
|
293 |
+
"grad_norm": 0.058379318565130234,
|
294 |
+
"learning_rate": 0.00016239700374531837,
|
295 |
+
"loss": 3.7307,
|
296 |
+
"step": 400
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.27621052631578946,
|
300 |
+
"grad_norm": 0.048859789967536926,
|
301 |
+
"learning_rate": 0.0001608988764044944,
|
302 |
+
"loss": 4.3039,
|
303 |
+
"step": 410
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.2829473684210526,
|
307 |
+
"grad_norm": 0.06003361940383911,
|
308 |
+
"learning_rate": 0.0001594007490636704,
|
309 |
+
"loss": 4.2032,
|
310 |
+
"step": 420
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.28968421052631577,
|
314 |
+
"grad_norm": 0.10120591521263123,
|
315 |
+
"learning_rate": 0.00015790262172284646,
|
316 |
+
"loss": 3.9567,
|
317 |
+
"step": 430
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.296421052631579,
|
321 |
+
"grad_norm": 0.21033401787281036,
|
322 |
+
"learning_rate": 0.00015640449438202248,
|
323 |
+
"loss": 3.9369,
|
324 |
+
"step": 440
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.3031578947368421,
|
328 |
+
"grad_norm": 0.06378967314958572,
|
329 |
+
"learning_rate": 0.00015490636704119852,
|
330 |
+
"loss": 3.6318,
|
331 |
+
"step": 450
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.3098947368421053,
|
335 |
+
"grad_norm": 0.042198359966278076,
|
336 |
+
"learning_rate": 0.00015340823970037455,
|
337 |
+
"loss": 4.1789,
|
338 |
+
"step": 460
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.31663157894736843,
|
342 |
+
"grad_norm": 0.053648848086595535,
|
343 |
+
"learning_rate": 0.00015191011235955057,
|
344 |
+
"loss": 4.1562,
|
345 |
+
"step": 470
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.3233684210526316,
|
349 |
+
"grad_norm": 0.0808805301785469,
|
350 |
+
"learning_rate": 0.00015041198501872659,
|
351 |
+
"loss": 3.8883,
|
352 |
+
"step": 480
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.33010526315789473,
|
356 |
+
"grad_norm": 0.13895294070243835,
|
357 |
+
"learning_rate": 0.00014891385767790263,
|
358 |
+
"loss": 3.9055,
|
359 |
+
"step": 490
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.3368421052631579,
|
363 |
+
"grad_norm": 0.11999215185642242,
|
364 |
+
"learning_rate": 0.00014741573033707865,
|
365 |
+
"loss": 3.6025,
|
366 |
+
"step": 500
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.34357894736842104,
|
370 |
+
"grad_norm": 0.0969998687505722,
|
371 |
+
"learning_rate": 0.0001459176029962547,
|
372 |
+
"loss": 4.2401,
|
373 |
+
"step": 510
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.3503157894736842,
|
377 |
+
"grad_norm": 0.2578948438167572,
|
378 |
+
"learning_rate": 0.00014441947565543072,
|
379 |
+
"loss": 4.1355,
|
380 |
+
"step": 520
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.35705263157894734,
|
384 |
+
"grad_norm": 0.067634217441082,
|
385 |
+
"learning_rate": 0.00014292134831460674,
|
386 |
+
"loss": 3.8735,
|
387 |
+
"step": 530
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.36378947368421055,
|
391 |
+
"grad_norm": 0.1961352676153183,
|
392 |
+
"learning_rate": 0.0001414232209737828,
|
393 |
+
"loss": 3.7641,
|
394 |
+
"step": 540
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.3705263157894737,
|
398 |
+
"grad_norm": 0.07940343767404556,
|
399 |
+
"learning_rate": 0.0001399250936329588,
|
400 |
+
"loss": 3.5177,
|
401 |
+
"step": 550
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.37726315789473686,
|
405 |
+
"grad_norm": 1.3029491901397705,
|
406 |
+
"learning_rate": 0.00013842696629213483,
|
407 |
+
"loss": 4.1854,
|
408 |
+
"step": 560
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.384,
|
412 |
+
"grad_norm": 0.10544762760400772,
|
413 |
+
"learning_rate": 0.00013692883895131088,
|
414 |
+
"loss": 4.3064,
|
415 |
+
"step": 570
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.39073684210526316,
|
419 |
+
"grad_norm": 0.150394469499588,
|
420 |
+
"learning_rate": 0.0001354307116104869,
|
421 |
+
"loss": 3.9517,
|
422 |
+
"step": 580
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.3974736842105263,
|
426 |
+
"grad_norm": 0.06921563297510147,
|
427 |
+
"learning_rate": 0.00013393258426966294,
|
428 |
+
"loss": 3.8917,
|
429 |
+
"step": 590
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.40421052631578946,
|
433 |
+
"grad_norm": 0.06402010470628738,
|
434 |
+
"learning_rate": 0.00013243445692883896,
|
435 |
+
"loss": 3.5635,
|
436 |
+
"step": 600
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.4109473684210526,
|
440 |
+
"grad_norm": 0.08918313682079315,
|
441 |
+
"learning_rate": 0.00013093632958801498,
|
442 |
+
"loss": 4.1197,
|
443 |
+
"step": 610
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.41768421052631577,
|
447 |
+
"grad_norm": 0.054397523403167725,
|
448 |
+
"learning_rate": 0.000129438202247191,
|
449 |
+
"loss": 4.0442,
|
450 |
+
"step": 620
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.4244210526315789,
|
454 |
+
"grad_norm": 0.068702831864357,
|
455 |
+
"learning_rate": 0.00012794007490636705,
|
456 |
+
"loss": 3.7506,
|
457 |
+
"step": 630
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.43115789473684213,
|
461 |
+
"grad_norm": 0.14575353264808655,
|
462 |
+
"learning_rate": 0.0001264419475655431,
|
463 |
+
"loss": 3.7359,
|
464 |
+
"step": 640
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.4378947368421053,
|
468 |
+
"grad_norm": 0.1481335461139679,
|
469 |
+
"learning_rate": 0.00012494382022471912,
|
470 |
+
"loss": 3.3705,
|
471 |
+
"step": 650
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.44463157894736843,
|
475 |
+
"grad_norm": 0.06438197940587997,
|
476 |
+
"learning_rate": 0.00012344569288389514,
|
477 |
+
"loss": 4.0248,
|
478 |
+
"step": 660
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.4513684210526316,
|
482 |
+
"grad_norm": 0.38855019211769104,
|
483 |
+
"learning_rate": 0.00012194756554307116,
|
484 |
+
"loss": 4.0265,
|
485 |
+
"step": 670
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.45810526315789474,
|
489 |
+
"grad_norm": 0.20793034136295319,
|
490 |
+
"learning_rate": 0.00012044943820224719,
|
491 |
+
"loss": 3.7305,
|
492 |
+
"step": 680
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.4648421052631579,
|
496 |
+
"grad_norm": 0.11011853814125061,
|
497 |
+
"learning_rate": 0.00011895131086142324,
|
498 |
+
"loss": 3.6933,
|
499 |
+
"step": 690
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.47157894736842104,
|
503 |
+
"grad_norm": 0.06795340031385422,
|
504 |
+
"learning_rate": 0.00011745318352059926,
|
505 |
+
"loss": 3.3734,
|
506 |
+
"step": 700
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.4783157894736842,
|
510 |
+
"grad_norm": 0.07788679003715515,
|
511 |
+
"learning_rate": 0.00011595505617977529,
|
512 |
+
"loss": 3.9053,
|
513 |
+
"step": 710
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.48505263157894735,
|
517 |
+
"grad_norm": 0.07339611649513245,
|
518 |
+
"learning_rate": 0.00011445692883895131,
|
519 |
+
"loss": 3.8685,
|
520 |
+
"step": 720
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.4917894736842105,
|
524 |
+
"grad_norm": 0.16048288345336914,
|
525 |
+
"learning_rate": 0.00011295880149812735,
|
526 |
+
"loss": 3.5673,
|
527 |
+
"step": 730
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.4985263157894737,
|
531 |
+
"grad_norm": 0.2596355974674225,
|
532 |
+
"learning_rate": 0.00011146067415730337,
|
533 |
+
"loss": 3.5684,
|
534 |
+
"step": 740
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.5052631578947369,
|
538 |
+
"grad_norm": 0.10115884989500046,
|
539 |
+
"learning_rate": 0.00010996254681647941,
|
540 |
+
"loss": 3.2226,
|
541 |
+
"step": 750
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.512,
|
545 |
+
"grad_norm": 0.13997367024421692,
|
546 |
+
"learning_rate": 0.00010846441947565545,
|
547 |
+
"loss": 3.8579,
|
548 |
+
"step": 760
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.5187368421052632,
|
552 |
+
"grad_norm": 0.08359155058860779,
|
553 |
+
"learning_rate": 0.00010696629213483147,
|
554 |
+
"loss": 3.8313,
|
555 |
+
"step": 770
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.5254736842105263,
|
559 |
+
"grad_norm": 0.2407791018486023,
|
560 |
+
"learning_rate": 0.0001054681647940075,
|
561 |
+
"loss": 3.5257,
|
562 |
+
"step": 780
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.5322105263157895,
|
566 |
+
"grad_norm": 0.34615418314933777,
|
567 |
+
"learning_rate": 0.00010397003745318352,
|
568 |
+
"loss": 3.5113,
|
569 |
+
"step": 790
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.5389473684210526,
|
573 |
+
"grad_norm": 0.06987264007329941,
|
574 |
+
"learning_rate": 0.00010247191011235954,
|
575 |
+
"loss": 3.1525,
|
576 |
+
"step": 800
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.5456842105263158,
|
580 |
+
"grad_norm": 0.07933894544839859,
|
581 |
+
"learning_rate": 0.00010097378277153558,
|
582 |
+
"loss": 3.718,
|
583 |
+
"step": 810
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.5524210526315789,
|
587 |
+
"grad_norm": 0.12424171715974808,
|
588 |
+
"learning_rate": 9.947565543071161e-05,
|
589 |
+
"loss": 3.6641,
|
590 |
+
"step": 820
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.5591578947368421,
|
594 |
+
"grad_norm": 0.2515564262866974,
|
595 |
+
"learning_rate": 9.797752808988764e-05,
|
596 |
+
"loss": 3.4268,
|
597 |
+
"step": 830
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.5658947368421052,
|
601 |
+
"grad_norm": 0.30851560831069946,
|
602 |
+
"learning_rate": 9.647940074906368e-05,
|
603 |
+
"loss": 3.3856,
|
604 |
+
"step": 840
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.5726315789473684,
|
608 |
+
"grad_norm": 0.05149822682142258,
|
609 |
+
"learning_rate": 9.49812734082397e-05,
|
610 |
+
"loss": 3.1259,
|
611 |
+
"step": 850
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.5793684210526315,
|
615 |
+
"grad_norm": 0.17960771918296814,
|
616 |
+
"learning_rate": 9.348314606741574e-05,
|
617 |
+
"loss": 3.6767,
|
618 |
+
"step": 860
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.5861052631578947,
|
622 |
+
"grad_norm": 0.17523854970932007,
|
623 |
+
"learning_rate": 9.198501872659176e-05,
|
624 |
+
"loss": 3.5995,
|
625 |
+
"step": 870
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.592842105263158,
|
629 |
+
"grad_norm": 0.3186163008213043,
|
630 |
+
"learning_rate": 9.04868913857678e-05,
|
631 |
+
"loss": 3.3966,
|
632 |
+
"step": 880
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.5995789473684211,
|
636 |
+
"grad_norm": 0.21263690292835236,
|
637 |
+
"learning_rate": 8.898876404494383e-05,
|
638 |
+
"loss": 3.3526,
|
639 |
+
"step": 890
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.6063157894736843,
|
643 |
+
"grad_norm": 0.10399254411458969,
|
644 |
+
"learning_rate": 8.749063670411985e-05,
|
645 |
+
"loss": 3.0519,
|
646 |
+
"step": 900
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.6130526315789474,
|
650 |
+
"grad_norm": 0.13143524527549744,
|
651 |
+
"learning_rate": 8.599250936329589e-05,
|
652 |
+
"loss": 3.629,
|
653 |
+
"step": 910
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.6197894736842106,
|
657 |
+
"grad_norm": 0.15374666452407837,
|
658 |
+
"learning_rate": 8.449438202247192e-05,
|
659 |
+
"loss": 3.6895,
|
660 |
+
"step": 920
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.6265263157894737,
|
664 |
+
"grad_norm": 0.23757484555244446,
|
665 |
+
"learning_rate": 8.299625468164794e-05,
|
666 |
+
"loss": 3.3622,
|
667 |
+
"step": 930
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.6332631578947369,
|
671 |
+
"grad_norm": 0.1661984622478485,
|
672 |
+
"learning_rate": 8.149812734082397e-05,
|
673 |
+
"loss": 3.3248,
|
674 |
+
"step": 940
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.64,
|
678 |
+
"grad_norm": 0.08603614568710327,
|
679 |
+
"learning_rate": 8e-05,
|
680 |
+
"loss": 3.0086,
|
681 |
+
"step": 950
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.6467368421052632,
|
685 |
+
"grad_norm": 0.07694745808839798,
|
686 |
+
"learning_rate": 7.850187265917604e-05,
|
687 |
+
"loss": 3.5162,
|
688 |
+
"step": 960
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.6534736842105263,
|
692 |
+
"grad_norm": 0.16395558416843414,
|
693 |
+
"learning_rate": 7.700374531835206e-05,
|
694 |
+
"loss": 3.4812,
|
695 |
+
"step": 970
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.6602105263157895,
|
699 |
+
"grad_norm": 0.13817398250102997,
|
700 |
+
"learning_rate": 7.55056179775281e-05,
|
701 |
+
"loss": 3.2516,
|
702 |
+
"step": 980
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.6669473684210526,
|
706 |
+
"grad_norm": 0.25807198882102966,
|
707 |
+
"learning_rate": 7.400749063670413e-05,
|
708 |
+
"loss": 3.2101,
|
709 |
+
"step": 990
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.6736842105263158,
|
713 |
+
"grad_norm": 0.06848172843456268,
|
714 |
+
"learning_rate": 7.250936329588015e-05,
|
715 |
+
"loss": 2.93,
|
716 |
+
"step": 1000
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.6804210526315789,
|
720 |
+
"grad_norm": 1.089575171470642,
|
721 |
+
"learning_rate": 7.101123595505618e-05,
|
722 |
+
"loss": 3.4925,
|
723 |
+
"step": 1010
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.6871578947368421,
|
727 |
+
"grad_norm": 0.20126965641975403,
|
728 |
+
"learning_rate": 6.951310861423222e-05,
|
729 |
+
"loss": 3.4603,
|
730 |
+
"step": 1020
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.6938947368421052,
|
734 |
+
"grad_norm": 0.21779027581214905,
|
735 |
+
"learning_rate": 6.801498127340824e-05,
|
736 |
+
"loss": 3.1723,
|
737 |
+
"step": 1030
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.7006315789473684,
|
741 |
+
"grad_norm": 0.18239159882068634,
|
742 |
+
"learning_rate": 6.651685393258428e-05,
|
743 |
+
"loss": 3.1903,
|
744 |
+
"step": 1040
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.7073684210526315,
|
748 |
+
"grad_norm": 0.06677573919296265,
|
749 |
+
"learning_rate": 6.50187265917603e-05,
|
750 |
+
"loss": 2.8445,
|
751 |
+
"step": 1050
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.7141052631578947,
|
755 |
+
"grad_norm": 0.42619746923446655,
|
756 |
+
"learning_rate": 6.352059925093634e-05,
|
757 |
+
"loss": 3.4319,
|
758 |
+
"step": 1060
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.7208421052631578,
|
762 |
+
"grad_norm": 0.12023507058620453,
|
763 |
+
"learning_rate": 6.202247191011237e-05,
|
764 |
+
"loss": 3.3826,
|
765 |
+
"step": 1070
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.7275789473684211,
|
769 |
+
"grad_norm": 0.15099403262138367,
|
770 |
+
"learning_rate": 6.052434456928839e-05,
|
771 |
+
"loss": 3.1425,
|
772 |
+
"step": 1080
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.7343157894736843,
|
776 |
+
"grad_norm": 0.3474717438220978,
|
777 |
+
"learning_rate": 5.902621722846442e-05,
|
778 |
+
"loss": 3.1279,
|
779 |
+
"step": 1090
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.7410526315789474,
|
783 |
+
"grad_norm": 0.12225649505853653,
|
784 |
+
"learning_rate": 5.752808988764046e-05,
|
785 |
+
"loss": 2.9033,
|
786 |
+
"step": 1100
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.7477894736842106,
|
790 |
+
"grad_norm": 0.19639068841934204,
|
791 |
+
"learning_rate": 5.6029962546816485e-05,
|
792 |
+
"loss": 3.3681,
|
793 |
+
"step": 1110
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.7545263157894737,
|
797 |
+
"grad_norm": 0.10571427643299103,
|
798 |
+
"learning_rate": 5.453183520599251e-05,
|
799 |
+
"loss": 3.335,
|
800 |
+
"step": 1120
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.7612631578947369,
|
804 |
+
"grad_norm": 0.5154901146888733,
|
805 |
+
"learning_rate": 5.3033707865168545e-05,
|
806 |
+
"loss": 3.0952,
|
807 |
+
"step": 1130
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.768,
|
811 |
+
"grad_norm": 0.6122628450393677,
|
812 |
+
"learning_rate": 5.153558052434457e-05,
|
813 |
+
"loss": 3.1269,
|
814 |
+
"step": 1140
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.7747368421052632,
|
818 |
+
"grad_norm": 0.19698569178581238,
|
819 |
+
"learning_rate": 5.00374531835206e-05,
|
820 |
+
"loss": 2.8233,
|
821 |
+
"step": 1150
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.7814736842105263,
|
825 |
+
"grad_norm": 0.13018374145030975,
|
826 |
+
"learning_rate": 4.853932584269663e-05,
|
827 |
+
"loss": 3.3094,
|
828 |
+
"step": 1160
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.7882105263157895,
|
832 |
+
"grad_norm": 0.09522128850221634,
|
833 |
+
"learning_rate": 4.704119850187266e-05,
|
834 |
+
"loss": 3.2765,
|
835 |
+
"step": 1170
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.7949473684210526,
|
839 |
+
"grad_norm": 0.10098107159137726,
|
840 |
+
"learning_rate": 4.554307116104869e-05,
|
841 |
+
"loss": 3.0807,
|
842 |
+
"step": 1180
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.8016842105263158,
|
846 |
+
"grad_norm": 0.18019132316112518,
|
847 |
+
"learning_rate": 4.404494382022472e-05,
|
848 |
+
"loss": 3.0332,
|
849 |
+
"step": 1190
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.8084210526315789,
|
853 |
+
"grad_norm": 0.16289708018302917,
|
854 |
+
"learning_rate": 4.2546816479400754e-05,
|
855 |
+
"loss": 2.7374,
|
856 |
+
"step": 1200
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.8151578947368421,
|
860 |
+
"grad_norm": 0.12666673958301544,
|
861 |
+
"learning_rate": 4.104868913857678e-05,
|
862 |
+
"loss": 3.2118,
|
863 |
+
"step": 1210
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.8218947368421052,
|
867 |
+
"grad_norm": 0.16891352832317352,
|
868 |
+
"learning_rate": 3.955056179775281e-05,
|
869 |
+
"loss": 3.1902,
|
870 |
+
"step": 1220
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.8286315789473684,
|
874 |
+
"grad_norm": 0.10958009213209152,
|
875 |
+
"learning_rate": 3.805243445692884e-05,
|
876 |
+
"loss": 2.9862,
|
877 |
+
"step": 1230
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.8353684210526315,
|
881 |
+
"grad_norm": 0.10642745345830917,
|
882 |
+
"learning_rate": 3.655430711610487e-05,
|
883 |
+
"loss": 3.0052,
|
884 |
+
"step": 1240
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.8421052631578947,
|
888 |
+
"grad_norm": 0.05656813085079193,
|
889 |
+
"learning_rate": 3.50561797752809e-05,
|
890 |
+
"loss": 2.723,
|
891 |
+
"step": 1250
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.8488421052631578,
|
895 |
+
"grad_norm": 0.08322717994451523,
|
896 |
+
"learning_rate": 3.355805243445693e-05,
|
897 |
+
"loss": 3.234,
|
898 |
+
"step": 1260
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.8555789473684211,
|
902 |
+
"grad_norm": 0.13246551156044006,
|
903 |
+
"learning_rate": 3.2059925093632956e-05,
|
904 |
+
"loss": 3.212,
|
905 |
+
"step": 1270
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.8623157894736843,
|
909 |
+
"grad_norm": 0.10225304961204529,
|
910 |
+
"learning_rate": 3.056179775280899e-05,
|
911 |
+
"loss": 2.9484,
|
912 |
+
"step": 1280
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.8690526315789474,
|
916 |
+
"grad_norm": 0.19440552592277527,
|
917 |
+
"learning_rate": 2.9063670411985024e-05,
|
918 |
+
"loss": 2.9266,
|
919 |
+
"step": 1290
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.8757894736842106,
|
923 |
+
"grad_norm": 0.08913037180900574,
|
924 |
+
"learning_rate": 2.7565543071161047e-05,
|
925 |
+
"loss": 2.6801,
|
926 |
+
"step": 1300
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.8825263157894737,
|
930 |
+
"grad_norm": 0.10815408080816269,
|
931 |
+
"learning_rate": 2.606741573033708e-05,
|
932 |
+
"loss": 3.1505,
|
933 |
+
"step": 1310
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.8892631578947369,
|
937 |
+
"grad_norm": 0.14371147751808167,
|
938 |
+
"learning_rate": 2.4569288389513108e-05,
|
939 |
+
"loss": 3.1293,
|
940 |
+
"step": 1320
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.896,
|
944 |
+
"grad_norm": 0.1680973470211029,
|
945 |
+
"learning_rate": 2.3071161048689138e-05,
|
946 |
+
"loss": 2.8961,
|
947 |
+
"step": 1330
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.9027368421052632,
|
951 |
+
"grad_norm": 0.19012019038200378,
|
952 |
+
"learning_rate": 2.157303370786517e-05,
|
953 |
+
"loss": 2.9096,
|
954 |
+
"step": 1340
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.9094736842105263,
|
958 |
+
"grad_norm": 0.060957688838243484,
|
959 |
+
"learning_rate": 2.00749063670412e-05,
|
960 |
+
"loss": 2.6879,
|
961 |
+
"step": 1350
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.9162105263157895,
|
965 |
+
"grad_norm": 0.15055014193058014,
|
966 |
+
"learning_rate": 1.857677902621723e-05,
|
967 |
+
"loss": 3.108,
|
968 |
+
"step": 1360
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.9229473684210526,
|
972 |
+
"grad_norm": 0.1378874033689499,
|
973 |
+
"learning_rate": 1.707865168539326e-05,
|
974 |
+
"loss": 3.0428,
|
975 |
+
"step": 1370
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.9296842105263158,
|
979 |
+
"grad_norm": 0.14901022613048553,
|
980 |
+
"learning_rate": 1.558052434456929e-05,
|
981 |
+
"loss": 2.8589,
|
982 |
+
"step": 1380
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.9364210526315789,
|
986 |
+
"grad_norm": 0.17515867948532104,
|
987 |
+
"learning_rate": 1.4082397003745318e-05,
|
988 |
+
"loss": 2.8563,
|
989 |
+
"step": 1390
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.9431578947368421,
|
993 |
+
"grad_norm": 0.11909812688827515,
|
994 |
+
"learning_rate": 1.258426966292135e-05,
|
995 |
+
"loss": 2.5759,
|
996 |
+
"step": 1400
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.9498947368421052,
|
1000 |
+
"grad_norm": 0.16348549723625183,
|
1001 |
+
"learning_rate": 1.1086142322097379e-05,
|
1002 |
+
"loss": 3.089,
|
1003 |
+
"step": 1410
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.9566315789473684,
|
1007 |
+
"grad_norm": 0.08107765763998032,
|
1008 |
+
"learning_rate": 9.588014981273409e-06,
|
1009 |
+
"loss": 3.0145,
|
1010 |
+
"step": 1420
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.9633684210526315,
|
1014 |
+
"grad_norm": 0.13251617550849915,
|
1015 |
+
"learning_rate": 8.089887640449438e-06,
|
1016 |
+
"loss": 2.8256,
|
1017 |
+
"step": 1430
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.9701052631578947,
|
1021 |
+
"grad_norm": 0.10319063812494278,
|
1022 |
+
"learning_rate": 6.591760299625469e-06,
|
1023 |
+
"loss": 2.8456,
|
1024 |
+
"step": 1440
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.9768421052631578,
|
1028 |
+
"grad_norm": 0.08950542658567429,
|
1029 |
+
"learning_rate": 5.093632958801498e-06,
|
1030 |
+
"loss": 2.605,
|
1031 |
+
"step": 1450
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.983578947368421,
|
1035 |
+
"grad_norm": 0.08379487693309784,
|
1036 |
+
"learning_rate": 3.5955056179775286e-06,
|
1037 |
+
"loss": 3.0334,
|
1038 |
+
"step": 1460
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.9903157894736843,
|
1042 |
+
"grad_norm": 0.1561821848154068,
|
1043 |
+
"learning_rate": 2.097378277153558e-06,
|
1044 |
+
"loss": 3.0357,
|
1045 |
+
"step": 1470
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.9970526315789474,
|
1049 |
+
"grad_norm": 0.07574011385440826,
|
1050 |
+
"learning_rate": 5.992509363295881e-07,
|
1051 |
+
"loss": 2.7458,
|
1052 |
+
"step": 1480
|
1053 |
+
}
|
1054 |
+
],
|
1055 |
+
"logging_steps": 10,
|
1056 |
+
"max_steps": 1484,
|
1057 |
+
"num_input_tokens_seen": 0,
|
1058 |
+
"num_train_epochs": 1,
|
1059 |
+
"save_steps": 500,
|
1060 |
+
"stateful_callbacks": {
|
1061 |
+
"TrainerControl": {
|
1062 |
+
"args": {
|
1063 |
+
"should_epoch_stop": false,
|
1064 |
+
"should_evaluate": false,
|
1065 |
+
"should_log": false,
|
1066 |
+
"should_save": true,
|
1067 |
+
"should_training_stop": true
|
1068 |
+
},
|
1069 |
+
"attributes": {}
|
1070 |
+
}
|
1071 |
+
},
|
1072 |
+
"total_flos": 2.32780044727799e+18,
|
1073 |
+
"train_batch_size": 4,
|
1074 |
+
"trial_name": null,
|
1075 |
+
"trial_params": null
|
1076 |
+
}
|
checkpoint-1484/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28da48262e760c5feb1c1e1f08d029374a06fa8d076c01d714f0912a196ad9d7
|
3 |
+
size 6904
|
checkpoint-1484/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
logs/events.out.tfevents.1738806841.apolo.2066103.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd129cec2e7b2768185ecf810b2a439324462aa63fa860020502e7dd4cbc0815
|
3 |
+
size 8328
|
logs/events.out.tfevents.1738813546.apolo.2108330.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74b32b9d52814ce91e481a2b4c7676a0ae9fe5f03c5507ded89a5ca3b06e6ae0
|
3 |
+
size 37585
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"▁<PRE>",
|
4 |
+
"▁<MID>",
|
5 |
+
"▁<SUF>",
|
6 |
+
"▁<EOT>"
|
7 |
+
],
|
8 |
+
"bos_token": {
|
9 |
+
"content": "<s>",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": false,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
},
|
15 |
+
"eos_token": {
|
16 |
+
"content": "</s>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"pad_token": "</s>",
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
|
3 |
+
size 500058
|
tokenizer_config.json
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32007": {
|
30 |
+
"content": "▁<PRE>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32008": {
|
38 |
+
"content": "▁<SUF>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32009": {
|
46 |
+
"content": "▁<MID>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32010": {
|
54 |
+
"content": "▁<EOT>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"additional_special_tokens": [
|
63 |
+
"▁<PRE>",
|
64 |
+
"▁<MID>",
|
65 |
+
"▁<SUF>",
|
66 |
+
"▁<EOT>"
|
67 |
+
],
|
68 |
+
"bos_token": "<s>",
|
69 |
+
"clean_up_tokenization_spaces": false,
|
70 |
+
"eos_token": "</s>",
|
71 |
+
"eot_token": "▁<EOT>",
|
72 |
+
"extra_special_tokens": {},
|
73 |
+
"fill_token": "<FILL_ME>",
|
74 |
+
"legacy": null,
|
75 |
+
"middle_token": "▁<MID>",
|
76 |
+
"model_max_length": 2048,
|
77 |
+
"pad_token": "</s>",
|
78 |
+
"padding_side": "right",
|
79 |
+
"prefix_token": "▁<PRE>",
|
80 |
+
"sp_model_kwargs": {},
|
81 |
+
"suffix_token": "▁<SUF>",
|
82 |
+
"tokenizer_class": "CodeLlamaTokenizer",
|
83 |
+
"unk_token": "<unk>",
|
84 |
+
"use_default_system_prompt": false
|
85 |
+
}
|