File size: 5,367 Bytes
00a8cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d4e90f
 
 
 
 
 
 
 
 
 
 
 
 
 
6f11022
 
 
 
 
00a8cd9
4f598b1
00a8cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f598b1
00a8cd9
 
 
4f598b1
00a8cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f598b1
 
 
00a8cd9
 
 
 
 
 
4f598b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
language:
- en
tags:
- pytorch
- transformer
- language-model
- mixture-of-experts
- tree-of-thoughts
- neural-memory
datasets:
- openai/gsm8k
- cais/mmlu
- TIGER-Lab/MMLU-Pro
- openai/MMMLU
- MMMU/MMMU
- greengerong/leetcode
- LimYeri/LeetCode_Python_Solutions_v2
- newfacade/LeetCodeDataset
- deepmind/math_dataset
- google/IFEval
- Idavidrein/gpqa
- google/frames-benchmark
- camel-ai/math
- camel-ai/code
- microsoft/SCBench
- princeton-nlp/SWE-bench_Verified
- princeton-nlp/SWE-bench
- wikimedia/wikipedia
- HuggingFace/C4
- SamuelYang/bookcorpus
- sentence-transformers/codesearchnet
- openai/openai_humaneval

license: mit
pipeline_tag: text2text-generation
---

# VishwamAI

VishwamAI is an enhanced transformer model that combines several cutting-edge techniques to improve reasoning, memory retention, and computational efficiency.

## Model Details

- **Developers**: VishwamAI Team
- **Architecture**: Enhanced Transformer with MoE
- **Release Date**: 2024
- **Languages**: English
- **Framework**: PyTorch
- **License**: MIT
- **Model Type**: Causal Language Model

### Technical Specifications

- Parameters: 671B
- Context Length: 32,768 tokens
- Hidden Size: 8,192
- Attention Heads: 64
- Layers: 120
- Vocabulary Size: 64,000

## Key Innovations

1. **Differentiable Cache Augmentation**
   - Enhances transformer's key-value cache with learnable embeddings
   - Enables asynchronous reasoning capabilities
   - Implements gated memory updating mechanism

2. **Neural Long-Term Memory**
   - Memory layers with read/write/forget gates
   - Multi-head memory attention mechanisms
   - Hierarchical memory organization

3. **Tree of Thoughts Reasoning**
   - Multi-path reasoning exploration
   - Beam search for solution paths
   - Intermediate step evaluation

## Training Data

The model is being trained on a diverse set of datasets:

1. **GSM8K**
   - Grade school math word problems
   - Tests mathematical reasoning capabilities

2. **MMLU (Massive Multitask Language Understanding)**
   - Broad knowledge evaluation
   - Multiple academic and professional domains

3. **MMLU-Pro**
   - Professional and specialized knowledge
   - Advanced reasoning tasks

4. **MMMLU (Massive Multi-task Multi-token Language Understanding)**
   - Extended reasoning capabilities
   - Complex multi-step problems

## Training Procedure

### Hardware Requirements

- Minimum: Single NVIDIA A100 (80GB)
- Recommended: Multiple A100s with NVLink
- Distributed Training: Supported via FSDP

### Software Requirements

- PyTorch >= 2.0
- CUDA >= 11.8
- [Optional] NCCL for distributed training

### Optimization

- FP8 precision training
- Fully Sharded Data Parallel (FSDP)
- Gradient checkpointing
- Mixed precision training
- CPU offloading capabilities

## Intended Use

This model is designed for:
- Research in language model capabilities
- Development of reasoning-enhanced applications
- Exploration of memory-augmented architectures

### Primary Intended Uses

1. **Research and Development**
   - Study of neural memory mechanisms
   - Investigation of reasoning capabilities
   - Architecture optimization research

2. **Educational Applications**
   - Mathematical problem solving
   - Complex reasoning tasks
   - Knowledge retrieval and application

### Out-of-Scope Uses

- Production deployment (currently in research phase)
- Safety-critical applications
- Real-time applications requiring low latency

## Evaluation Results

Currently in training and evaluation phase. Initial metrics will be published after completion of training.

## Limitations

1. **Current Development Status**
   - Training in progress
   - Performance metrics are preliminary
   - Features under active development

2. **Technical Limitations**
   - High computational requirements
   - Large memory footprint
   - Complex deployment needs

3. **Capability Limitations**
   - Reasoning capabilities still being optimized
   - Memory mechanisms under refinement
   - Limited multilingual support

## Bias and Ethics

- Model is currently in research phase
- Full bias evaluation pending
- Not recommended for production use
- Safety measures being implemented

## Environmental Impact

Working to minimize environmental impact through:
- Efficient training procedures
- Optimized architecture
- Resource-aware deployment options

## Citation

```bibtex
@software{vishwamai2024,
  author = {Kasinadhsarma},
  title = {VishwamAI: Enhanced Transformer with Advanced Reasoning Capabilities},
  year = {2024},
  publisher = {GitHub},
  url = {https://github.com/VishwamAI/VishwamAI}
}
```

## Example Usage

```python
from vishwamai.model_utils import load_model

# Load model
model = load_model("vishwamai/model", device="cuda")

# Generate output
input_ids = tokenizer.encode("Solve this problem step by step:", return_tensors="pt")
output = model(input_ids)
```

## Additional Information

- **Repository**: [GitHub Repository](https://github.com/VishwamAI/VishwamAI)
- **Issues**: [GitHub Issues](https://github.com/VishwamAI/VishwamAI/issues)
- **Documentation**: under construction mode owe are devloping it 
## Acknowledgments

This project builds upon several research papers and open-source projects. We thank the authors and contributors of:
- Transformer architectures
- Mixture of Experts implementations
- Tree of Thoughts reasoning
- Neural memory architectures