Upload load_model.py
Browse files- load_model.py +121 -0
load_model.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from tensorflow import keras
|
| 3 |
+
from tensorflow.keras import regularizers
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tensorflow_probability as tfp
|
| 6 |
+
|
| 7 |
+
#Affine Coupling Layer
|
| 8 |
+
## Creating a custom layer with keras API.
|
| 9 |
+
output_dim = 256
|
| 10 |
+
reg = 0.01
|
| 11 |
+
|
| 12 |
+
def Coupling(input_shape):
|
| 13 |
+
input = keras.layers.Input(shape=input_shape)
|
| 14 |
+
|
| 15 |
+
t_layer_1 = keras.layers.Dense(
|
| 16 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 17 |
+
)(input)
|
| 18 |
+
t_layer_2 = keras.layers.Dense(
|
| 19 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 20 |
+
)(t_layer_1)
|
| 21 |
+
t_layer_3 = keras.layers.Dense(
|
| 22 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 23 |
+
)(t_layer_2)
|
| 24 |
+
t_layer_4 = keras.layers.Dense(
|
| 25 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 26 |
+
)(t_layer_3)
|
| 27 |
+
t_layer_5 = keras.layers.Dense(
|
| 28 |
+
input_shape, activation="linear", kernel_regularizer=regularizers.l2(reg)
|
| 29 |
+
)(t_layer_4)
|
| 30 |
+
|
| 31 |
+
s_layer_1 = keras.layers.Dense(
|
| 32 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 33 |
+
)(input)
|
| 34 |
+
s_layer_2 = keras.layers.Dense(
|
| 35 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 36 |
+
)(s_layer_1)
|
| 37 |
+
s_layer_3 = keras.layers.Dense(
|
| 38 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 39 |
+
)(s_layer_2)
|
| 40 |
+
s_layer_4 = keras.layers.Dense(
|
| 41 |
+
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
|
| 42 |
+
)(s_layer_3)
|
| 43 |
+
s_layer_5 = keras.layers.Dense(
|
| 44 |
+
input_shape, activation="tanh", kernel_regularizer=regularizers.l2(reg)
|
| 45 |
+
)(s_layer_4)
|
| 46 |
+
|
| 47 |
+
return keras.Model(inputs=input, outputs=[s_layer_5, t_layer_5])
|
| 48 |
+
|
| 49 |
+
#Real NVP
|
| 50 |
+
class RealNVP(keras.Model):
|
| 51 |
+
def __init__(self, num_coupling_layers):
|
| 52 |
+
super(RealNVP, self).__init__()
|
| 53 |
+
|
| 54 |
+
self.num_coupling_layers = num_coupling_layers
|
| 55 |
+
|
| 56 |
+
# Distribution of the latent space.
|
| 57 |
+
self.distribution = tfp.distributions.MultivariateNormalDiag(
|
| 58 |
+
loc=[0.0, 0.0], scale_diag=[1.0, 1.0]
|
| 59 |
+
)
|
| 60 |
+
self.masks = np.array(
|
| 61 |
+
[[0, 1], [1, 0]] * (num_coupling_layers // 2), dtype="float32"
|
| 62 |
+
)
|
| 63 |
+
self.loss_tracker = keras.metrics.Mean(name="loss")
|
| 64 |
+
self.layers_list = [Coupling(2) for i in range(num_coupling_layers)]
|
| 65 |
+
|
| 66 |
+
@property
|
| 67 |
+
def metrics(self):
|
| 68 |
+
"""List of the model's metrics.
|
| 69 |
+
We make sure the loss tracker is listed as part of `model.metrics`
|
| 70 |
+
so that `fit()` and `evaluate()` are able to `reset()` the loss tracker
|
| 71 |
+
at the start of each epoch and at the start of an `evaluate()` call.
|
| 72 |
+
"""
|
| 73 |
+
return [self.loss_tracker]
|
| 74 |
+
|
| 75 |
+
def call(self, x, training=True):
|
| 76 |
+
log_det_inv = 0
|
| 77 |
+
direction = 1
|
| 78 |
+
if training:
|
| 79 |
+
direction = -1
|
| 80 |
+
for i in range(self.num_coupling_layers)[::direction]:
|
| 81 |
+
x_masked = x * self.masks[i]
|
| 82 |
+
reversed_mask = 1 - self.masks[i]
|
| 83 |
+
s, t = self.layers_list[i](x_masked)
|
| 84 |
+
s *= reversed_mask
|
| 85 |
+
t *= reversed_mask
|
| 86 |
+
gate = (direction - 1) / 2
|
| 87 |
+
x = (
|
| 88 |
+
reversed_mask
|
| 89 |
+
* (x * tf.exp(direction * s) + direction * t * tf.exp(gate * s))
|
| 90 |
+
+ x_masked
|
| 91 |
+
)
|
| 92 |
+
log_det_inv += gate * tf.reduce_sum(s, [1])
|
| 93 |
+
|
| 94 |
+
return x, log_det_inv
|
| 95 |
+
|
| 96 |
+
# Log likelihood of the normal distribution plus the log determinant of the jacobian.
|
| 97 |
+
|
| 98 |
+
def log_loss(self, x):
|
| 99 |
+
y, logdet = self(x)
|
| 100 |
+
log_likelihood = self.distribution.log_prob(y) + logdet
|
| 101 |
+
return -tf.reduce_mean(log_likelihood)
|
| 102 |
+
|
| 103 |
+
def train_step(self, data):
|
| 104 |
+
with tf.GradientTape() as tape:
|
| 105 |
+
|
| 106 |
+
loss = self.log_loss(data)
|
| 107 |
+
|
| 108 |
+
g = tape.gradient(loss, self.trainable_variables)
|
| 109 |
+
self.optimizer.apply_gradients(zip(g, self.trainable_variables))
|
| 110 |
+
self.loss_tracker.update_state(loss)
|
| 111 |
+
|
| 112 |
+
return {"loss": self.loss_tracker.result()}
|
| 113 |
+
|
| 114 |
+
def test_step(self, data):
|
| 115 |
+
loss = self.log_loss(data)
|
| 116 |
+
self.loss_tracker.update_state(loss)
|
| 117 |
+
|
| 118 |
+
return {"loss": self.loss_tracker.result()}
|
| 119 |
+
|
| 120 |
+
def load_model():
|
| 121 |
+
return RealNVP(num_coupling_layers=6)
|