drbh
commited on
Commit
·
56449c1
1
Parent(s):
09eec95
feat: bump api on readme
Browse files- README.md +8 -14
- scripts/readme_example.py +3 -8
README.md
CHANGED
|
@@ -30,8 +30,6 @@ torch.manual_seed(42)
|
|
| 30 |
flash_attn = get_kernel("kernels-community/flash-attn")
|
| 31 |
device = torch.device("cuda")
|
| 32 |
|
| 33 |
-
print("Flash Attention functions:", [i for i in dir(flash_attn) if i.startswith("mha")])
|
| 34 |
-
|
| 35 |
# Create test tensors
|
| 36 |
B, S, H, D = 2, 5, 4, 8 # batch, seq_len, heads, head_dim
|
| 37 |
q = k = v = torch.randn(B, S, H, D, device=device, dtype=torch.float16)
|
|
@@ -46,12 +44,11 @@ def reference_attention(query, key, value, causal=False):
|
|
| 46 |
# 1. Standard attention
|
| 47 |
print("\n1. Standard attention:")
|
| 48 |
out_ref = reference_attention(q, k, v)
|
| 49 |
-
out_flash = flash_attn.
|
| 50 |
q=q,
|
| 51 |
k=k,
|
| 52 |
v=v,
|
| 53 |
is_causal=False,
|
| 54 |
-
softmax_scale=1.0 / (D ** 0.5), # scale factor
|
| 55 |
)[0]
|
| 56 |
print(f"Reference output: {out_ref.shape}")
|
| 57 |
print(f"Flash output: {out_flash.shape}")
|
|
@@ -61,12 +58,11 @@ print(f"Outputs close: {torch.allclose(out_flash, out_ref, atol=1e-2, rtol=1e-3)
|
|
| 61 |
print("\n2. Causal attention:")
|
| 62 |
|
| 63 |
out_ref_causal = reference_attention(q, k, v, causal=True)
|
| 64 |
-
out_causal = flash_attn.
|
| 65 |
q=q,
|
| 66 |
k=k,
|
| 67 |
v=v,
|
| 68 |
is_causal=True,
|
| 69 |
-
softmax_scale=1.0 / (D ** 0.5), # scale factor
|
| 70 |
)[0]
|
| 71 |
print(f"Reference causal output: {out_ref_causal.shape}")
|
| 72 |
print(f"Flash causal output: {out_causal.shape}")
|
|
@@ -74,7 +70,7 @@ print(f"Outputs close: {torch.allclose(out_causal, out_ref_causal, atol=1e-2, rt
|
|
| 74 |
|
| 75 |
def var_reference_attention(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, causal=False):
|
| 76 |
batch_size = cu_seqlens_q.shape[0] - 1
|
| 77 |
-
# Return output in packed format
|
| 78 |
total_tokens_q = q.shape[0]
|
| 79 |
out = torch.zeros((total_tokens_q, q.shape[1], q.shape[2]), device=q.device, dtype=q.dtype)
|
| 80 |
|
|
@@ -111,7 +107,7 @@ cu_k = torch.tensor([0, 4, 9, 12], device=device, dtype=torch.int32)
|
|
| 111 |
|
| 112 |
out_var_ref = var_reference_attention(q_var, k_var, v_var, cu_q, cu_k, max_seqlen_q=4, max_seqlen_k=5, causal=False)
|
| 113 |
# Custom function to handle variable
|
| 114 |
-
out_var = flash_attn.
|
| 115 |
q=q_var,
|
| 116 |
k=k_var,
|
| 117 |
v=v_var,
|
|
@@ -119,7 +115,6 @@ out_var = flash_attn.mha_varlen_fwd(
|
|
| 119 |
cu_seqlens_k=cu_k,
|
| 120 |
max_seqlen_q=4,
|
| 121 |
max_seqlen_k=5,
|
| 122 |
-
softmax_scale=1.0 / (D ** 0.5), # scale factor
|
| 123 |
)[0]
|
| 124 |
print(f"Variable length output: {out_var.shape}")
|
| 125 |
print(f"Reference variable length output: {out_var_ref.shape}")
|
|
@@ -133,21 +128,20 @@ uv run scripts/readme_example.py
|
|
| 133 |
```
|
| 134 |
|
| 135 |
```txt
|
| 136 |
-
Reading inline script metadata from `
|
| 137 |
-
Fetching
|
| 138 |
-
Flash Attention functions: ['mha_bwd', 'mha_fwd', 'mha_fwd_kvcache', 'mha_varlen_bwd', 'mha_varlen_fwd']
|
| 139 |
|
| 140 |
1. Standard attention:
|
| 141 |
Reference output: torch.Size([2, 5, 4, 8])
|
| 142 |
Flash output: torch.Size([2, 5, 4, 8])
|
| 143 |
Outputs close: True
|
| 144 |
|
| 145 |
-
|
| 146 |
Reference causal output: torch.Size([2, 5, 4, 8])
|
| 147 |
Flash causal output: torch.Size([2, 5, 4, 8])
|
| 148 |
Outputs close: True
|
| 149 |
|
| 150 |
-
|
| 151 |
Variable length output: torch.Size([10, 4, 8])
|
| 152 |
Reference variable length output: torch.Size([10, 4, 8])
|
| 153 |
Outputs close: True
|
|
|
|
| 30 |
flash_attn = get_kernel("kernels-community/flash-attn")
|
| 31 |
device = torch.device("cuda")
|
| 32 |
|
|
|
|
|
|
|
| 33 |
# Create test tensors
|
| 34 |
B, S, H, D = 2, 5, 4, 8 # batch, seq_len, heads, head_dim
|
| 35 |
q = k = v = torch.randn(B, S, H, D, device=device, dtype=torch.float16)
|
|
|
|
| 44 |
# 1. Standard attention
|
| 45 |
print("\n1. Standard attention:")
|
| 46 |
out_ref = reference_attention(q, k, v)
|
| 47 |
+
out_flash = flash_attn.fwd(
|
| 48 |
q=q,
|
| 49 |
k=k,
|
| 50 |
v=v,
|
| 51 |
is_causal=False,
|
|
|
|
| 52 |
)[0]
|
| 53 |
print(f"Reference output: {out_ref.shape}")
|
| 54 |
print(f"Flash output: {out_flash.shape}")
|
|
|
|
| 58 |
print("\n2. Causal attention:")
|
| 59 |
|
| 60 |
out_ref_causal = reference_attention(q, k, v, causal=True)
|
| 61 |
+
out_causal = flash_attn.fwd(
|
| 62 |
q=q,
|
| 63 |
k=k,
|
| 64 |
v=v,
|
| 65 |
is_causal=True,
|
|
|
|
| 66 |
)[0]
|
| 67 |
print(f"Reference causal output: {out_ref_causal.shape}")
|
| 68 |
print(f"Flash causal output: {out_causal.shape}")
|
|
|
|
| 70 |
|
| 71 |
def var_reference_attention(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, causal=False):
|
| 72 |
batch_size = cu_seqlens_q.shape[0] - 1
|
| 73 |
+
# Return output in packed format (same as flash attention)
|
| 74 |
total_tokens_q = q.shape[0]
|
| 75 |
out = torch.zeros((total_tokens_q, q.shape[1], q.shape[2]), device=q.device, dtype=q.dtype)
|
| 76 |
|
|
|
|
| 107 |
|
| 108 |
out_var_ref = var_reference_attention(q_var, k_var, v_var, cu_q, cu_k, max_seqlen_q=4, max_seqlen_k=5, causal=False)
|
| 109 |
# Custom function to handle variable
|
| 110 |
+
out_var = flash_attn.varlen_fwd(
|
| 111 |
q=q_var,
|
| 112 |
k=k_var,
|
| 113 |
v=v_var,
|
|
|
|
| 115 |
cu_seqlens_k=cu_k,
|
| 116 |
max_seqlen_q=4,
|
| 117 |
max_seqlen_k=5,
|
|
|
|
| 118 |
)[0]
|
| 119 |
print(f"Variable length output: {out_var.shape}")
|
| 120 |
print(f"Reference variable length output: {out_var_ref.shape}")
|
|
|
|
| 128 |
```
|
| 129 |
|
| 130 |
```txt
|
| 131 |
+
Reading inline script metadata from `scripts/readme_example.py`
|
| 132 |
+
Fetching 20 files: 100%|██████████████████████████████████████████████████| 20/20 [00:00<00:00, 16371.21it/s]
|
|
|
|
| 133 |
|
| 134 |
1. Standard attention:
|
| 135 |
Reference output: torch.Size([2, 5, 4, 8])
|
| 136 |
Flash output: torch.Size([2, 5, 4, 8])
|
| 137 |
Outputs close: True
|
| 138 |
|
| 139 |
+
2. Causal attention:
|
| 140 |
Reference causal output: torch.Size([2, 5, 4, 8])
|
| 141 |
Flash causal output: torch.Size([2, 5, 4, 8])
|
| 142 |
Outputs close: True
|
| 143 |
|
| 144 |
+
3. Variable length sequences:
|
| 145 |
Variable length output: torch.Size([10, 4, 8])
|
| 146 |
Reference variable length output: torch.Size([10, 4, 8])
|
| 147 |
Outputs close: True
|
scripts/readme_example.py
CHANGED
|
@@ -13,8 +13,6 @@ torch.manual_seed(42)
|
|
| 13 |
flash_attn = get_kernel("kernels-community/flash-attn")
|
| 14 |
device = torch.device("cuda")
|
| 15 |
|
| 16 |
-
print("Flash Attention functions:", [i for i in dir(flash_attn) if i.startswith("mha")])
|
| 17 |
-
|
| 18 |
# Create test tensors
|
| 19 |
B, S, H, D = 2, 5, 4, 8 # batch, seq_len, heads, head_dim
|
| 20 |
q = k = v = torch.randn(B, S, H, D, device=device, dtype=torch.float16)
|
|
@@ -29,12 +27,11 @@ def reference_attention(query, key, value, causal=False):
|
|
| 29 |
# 1. Standard attention
|
| 30 |
print("\n1. Standard attention:")
|
| 31 |
out_ref = reference_attention(q, k, v)
|
| 32 |
-
out_flash = flash_attn.
|
| 33 |
q=q,
|
| 34 |
k=k,
|
| 35 |
v=v,
|
| 36 |
is_causal=False,
|
| 37 |
-
softmax_scale=1.0 / (D ** 0.5), # scale factor
|
| 38 |
)[0]
|
| 39 |
print(f"Reference output: {out_ref.shape}")
|
| 40 |
print(f"Flash output: {out_flash.shape}")
|
|
@@ -44,12 +41,11 @@ print(f"Outputs close: {torch.allclose(out_flash, out_ref, atol=1e-2, rtol=1e-3)
|
|
| 44 |
print("\n2. Causal attention:")
|
| 45 |
|
| 46 |
out_ref_causal = reference_attention(q, k, v, causal=True)
|
| 47 |
-
out_causal = flash_attn.
|
| 48 |
q=q,
|
| 49 |
k=k,
|
| 50 |
v=v,
|
| 51 |
is_causal=True,
|
| 52 |
-
softmax_scale=1.0 / (D ** 0.5), # scale factor
|
| 53 |
)[0]
|
| 54 |
print(f"Reference causal output: {out_ref_causal.shape}")
|
| 55 |
print(f"Flash causal output: {out_causal.shape}")
|
|
@@ -94,7 +90,7 @@ cu_k = torch.tensor([0, 4, 9, 12], device=device, dtype=torch.int32)
|
|
| 94 |
|
| 95 |
out_var_ref = var_reference_attention(q_var, k_var, v_var, cu_q, cu_k, max_seqlen_q=4, max_seqlen_k=5, causal=False)
|
| 96 |
# Custom function to handle variable
|
| 97 |
-
out_var = flash_attn.
|
| 98 |
q=q_var,
|
| 99 |
k=k_var,
|
| 100 |
v=v_var,
|
|
@@ -102,7 +98,6 @@ out_var = flash_attn.mha_varlen_fwd(
|
|
| 102 |
cu_seqlens_k=cu_k,
|
| 103 |
max_seqlen_q=4,
|
| 104 |
max_seqlen_k=5,
|
| 105 |
-
softmax_scale=1.0 / (D ** 0.5), # scale factor
|
| 106 |
)[0]
|
| 107 |
print(f"Variable length output: {out_var.shape}")
|
| 108 |
print(f"Reference variable length output: {out_var_ref.shape}")
|
|
|
|
| 13 |
flash_attn = get_kernel("kernels-community/flash-attn")
|
| 14 |
device = torch.device("cuda")
|
| 15 |
|
|
|
|
|
|
|
| 16 |
# Create test tensors
|
| 17 |
B, S, H, D = 2, 5, 4, 8 # batch, seq_len, heads, head_dim
|
| 18 |
q = k = v = torch.randn(B, S, H, D, device=device, dtype=torch.float16)
|
|
|
|
| 27 |
# 1. Standard attention
|
| 28 |
print("\n1. Standard attention:")
|
| 29 |
out_ref = reference_attention(q, k, v)
|
| 30 |
+
out_flash = flash_attn.fwd(
|
| 31 |
q=q,
|
| 32 |
k=k,
|
| 33 |
v=v,
|
| 34 |
is_causal=False,
|
|
|
|
| 35 |
)[0]
|
| 36 |
print(f"Reference output: {out_ref.shape}")
|
| 37 |
print(f"Flash output: {out_flash.shape}")
|
|
|
|
| 41 |
print("\n2. Causal attention:")
|
| 42 |
|
| 43 |
out_ref_causal = reference_attention(q, k, v, causal=True)
|
| 44 |
+
out_causal = flash_attn.fwd(
|
| 45 |
q=q,
|
| 46 |
k=k,
|
| 47 |
v=v,
|
| 48 |
is_causal=True,
|
|
|
|
| 49 |
)[0]
|
| 50 |
print(f"Reference causal output: {out_ref_causal.shape}")
|
| 51 |
print(f"Flash causal output: {out_causal.shape}")
|
|
|
|
| 90 |
|
| 91 |
out_var_ref = var_reference_attention(q_var, k_var, v_var, cu_q, cu_k, max_seqlen_q=4, max_seqlen_k=5, causal=False)
|
| 92 |
# Custom function to handle variable
|
| 93 |
+
out_var = flash_attn.varlen_fwd(
|
| 94 |
q=q_var,
|
| 95 |
k=k_var,
|
| 96 |
v=v_var,
|
|
|
|
| 98 |
cu_seqlens_k=cu_k,
|
| 99 |
max_seqlen_q=4,
|
| 100 |
max_seqlen_k=5,
|
|
|
|
| 101 |
)[0]
|
| 102 |
print(f"Variable length output: {out_var.shape}")
|
| 103 |
print(f"Reference variable length output: {out_var_ref.shape}")
|