Update README.md
Browse files
README.md
CHANGED
@@ -52,6 +52,21 @@ pip install git+https://github.com/urchade/GLiNER.git
|
|
52 |
---
|
53 |
|
54 |
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
```python
|
57 |
from gliner import GLiNER
|
@@ -64,7 +79,7 @@ text = (
|
|
64 |
"develop and sell Wozniak's Apple I personal computer."
|
65 |
)
|
66 |
|
67 |
-
labels = ["person", "
|
68 |
|
69 |
model.run([text], labels, threshold=0.3, num_gen_sequences=1)
|
70 |
```
|
@@ -80,7 +95,58 @@ model.run([text], labels, threshold=0.3, num_gen_sequences=1)
|
|
80 |
"start": 21,
|
81 |
"end": 26,
|
82 |
"text": "Apple",
|
83 |
-
"label": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
"score": 0.6795641779899597,
|
85 |
"generated labels": ["Organization"]
|
86 |
},
|
@@ -88,7 +154,7 @@ model.run([text], labels, threshold=0.3, num_gen_sequences=1)
|
|
88 |
"start": 47,
|
89 |
"end": 60,
|
90 |
"text": "April 1, 1976",
|
91 |
-
"label": "
|
92 |
"score": 0.44296327233314514,
|
93 |
"generated labels": ["Date"]
|
94 |
},
|
|
|
52 |
---
|
53 |
|
54 |
## Usage
|
55 |
+
If you need an open ontology entity extraction use tag `label` in the list of labels, please check example below:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from gliner import GLiNER
|
59 |
+
|
60 |
+
model = GLiNER.from_pretrained("knowledgator/gliner-decoder-small-v1.0")
|
61 |
+
|
62 |
+
text = "Hugging Face is a company that advances and democratizes artificial intelligence through open source and science."
|
63 |
+
|
64 |
+
labels = ["label"]
|
65 |
+
|
66 |
+
model.predict_entities(text, labels, threshold=0.3, num_gen_sequences=1)
|
67 |
+
```
|
68 |
+
|
69 |
+
If you need to run a model on many text and/or set some labels constraints, please check example below:
|
70 |
|
71 |
```python
|
72 |
from gliner import GLiNER
|
|
|
79 |
"develop and sell Wozniak's Apple I personal computer."
|
80 |
)
|
81 |
|
82 |
+
labels = ["person", "company", "date"]
|
83 |
|
84 |
model.run([text], labels, threshold=0.3, num_gen_sequences=1)
|
85 |
```
|
|
|
95 |
"start": 21,
|
96 |
"end": 26,
|
97 |
"text": "Apple",
|
98 |
+
"label": "company",
|
99 |
+
"score": 0.6795641779899597,
|
100 |
+
"generated labels": ["Organization"]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"start": 47,
|
104 |
+
"end": 60,
|
105 |
+
"text": "April 1, 1976",
|
106 |
+
"label": "date",
|
107 |
+
"score": 0.44296327233314514,
|
108 |
+
"generated labels": ["Date"]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"start": 65,
|
112 |
+
"end": 78,
|
113 |
+
"text": "Steve Wozniak",
|
114 |
+
"label": "person",
|
115 |
+
"score": 0.9934439659118652,
|
116 |
+
"generated labels": ["Person"]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"start": 80,
|
120 |
+
"end": 90,
|
121 |
+
"text": "Steve Jobs",
|
122 |
+
"label": "person",
|
123 |
+
"score": 0.9725918769836426,
|
124 |
+
"generated labels": ["Person"]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"start": 107,
|
128 |
+
"end": 119,
|
129 |
+
"text": "Ronald Wayne",
|
130 |
+
"label": "person",
|
131 |
+
"score": 0.9964536428451538,
|
132 |
+
"generated labels": ["Person"]
|
133 |
+
}
|
134 |
+
]
|
135 |
+
]
|
136 |
+
```
|
137 |
+
|
138 |
+
---
|
139 |
+
|
140 |
+
### Example Output
|
141 |
+
|
142 |
+
```json
|
143 |
+
[
|
144 |
+
[
|
145 |
+
{
|
146 |
+
"start": 21,
|
147 |
+
"end": 26,
|
148 |
+
"text": "Apple",
|
149 |
+
"label": "company",
|
150 |
"score": 0.6795641779899597,
|
151 |
"generated labels": ["Organization"]
|
152 |
},
|
|
|
154 |
"start": 47,
|
155 |
"end": 60,
|
156 |
"text": "April 1, 1976",
|
157 |
+
"label": "time",
|
158 |
"score": 0.44296327233314514,
|
159 |
"generated labels": ["Date"]
|
160 |
},
|