Ihor commited on
Commit
98a54ba
·
verified ·
1 Parent(s): 1088653

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -52,6 +52,21 @@ pip install git+https://github.com/urchade/GLiNER.git
52
  ---
53
 
54
  ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ```python
57
  from gliner import GLiNER
@@ -64,7 +79,7 @@ text = (
64
  "develop and sell Wozniak's Apple I personal computer."
65
  )
66
 
67
- labels = ["person", "other"]
68
 
69
  model.run([text], labels, threshold=0.3, num_gen_sequences=1)
70
  ```
@@ -80,7 +95,58 @@ model.run([text], labels, threshold=0.3, num_gen_sequences=1)
80
  "start": 21,
81
  "end": 26,
82
  "text": "Apple",
83
- "label": "other",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  "score": 0.6795641779899597,
85
  "generated labels": ["Organization"]
86
  },
@@ -88,7 +154,7 @@ model.run([text], labels, threshold=0.3, num_gen_sequences=1)
88
  "start": 47,
89
  "end": 60,
90
  "text": "April 1, 1976",
91
- "label": "other",
92
  "score": 0.44296327233314514,
93
  "generated labels": ["Date"]
94
  },
 
52
  ---
53
 
54
  ## Usage
55
+ If you need an open ontology entity extraction use tag `label` in the list of labels, please check example below:
56
+
57
+ ```python
58
+ from gliner import GLiNER
59
+
60
+ model = GLiNER.from_pretrained("knowledgator/gliner-decoder-small-v1.0")
61
+
62
+ text = "Hugging Face is a company that advances and democratizes artificial intelligence through open source and science."
63
+
64
+ labels = ["label"]
65
+
66
+ model.predict_entities(text, labels, threshold=0.3, num_gen_sequences=1)
67
+ ```
68
+
69
+ If you need to run a model on many text and/or set some labels constraints, please check example below:
70
 
71
  ```python
72
  from gliner import GLiNER
 
79
  "develop and sell Wozniak's Apple I personal computer."
80
  )
81
 
82
+ labels = ["person", "company", "date"]
83
 
84
  model.run([text], labels, threshold=0.3, num_gen_sequences=1)
85
  ```
 
95
  "start": 21,
96
  "end": 26,
97
  "text": "Apple",
98
+ "label": "company",
99
+ "score": 0.6795641779899597,
100
+ "generated labels": ["Organization"]
101
+ },
102
+ {
103
+ "start": 47,
104
+ "end": 60,
105
+ "text": "April 1, 1976",
106
+ "label": "date",
107
+ "score": 0.44296327233314514,
108
+ "generated labels": ["Date"]
109
+ },
110
+ {
111
+ "start": 65,
112
+ "end": 78,
113
+ "text": "Steve Wozniak",
114
+ "label": "person",
115
+ "score": 0.9934439659118652,
116
+ "generated labels": ["Person"]
117
+ },
118
+ {
119
+ "start": 80,
120
+ "end": 90,
121
+ "text": "Steve Jobs",
122
+ "label": "person",
123
+ "score": 0.9725918769836426,
124
+ "generated labels": ["Person"]
125
+ },
126
+ {
127
+ "start": 107,
128
+ "end": 119,
129
+ "text": "Ronald Wayne",
130
+ "label": "person",
131
+ "score": 0.9964536428451538,
132
+ "generated labels": ["Person"]
133
+ }
134
+ ]
135
+ ]
136
+ ```
137
+
138
+ ---
139
+
140
+ ### Example Output
141
+
142
+ ```json
143
+ [
144
+ [
145
+ {
146
+ "start": 21,
147
+ "end": 26,
148
+ "text": "Apple",
149
+ "label": "company",
150
  "score": 0.6795641779899597,
151
  "generated labels": ["Organization"]
152
  },
 
154
  "start": 47,
155
  "end": 60,
156
  "text": "April 1, 1976",
157
+ "label": "time",
158
  "score": 0.44296327233314514,
159
  "generated labels": ["Date"]
160
  },