--- library_name: transformers license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: gbert_synset_classifier_pair results: [] --- # gbert_synset_classifier_pair This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4826 - Accuracy: 0.8551 - F1: 0.8501 - Precision: 0.8590 - Recall: 0.8551 - F1 Macro: 0.7419 - Precision Macro: 0.7334 - Recall Macro: 0.7673 - F1 Micro: 0.8551 - Precision Micro: 0.8551 - Recall Micro: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:| | 2.7743 | 0.3891 | 100 | 1.0270 | 0.7995 | 0.7723 | 0.7757 | 0.7995 | 0.5034 | 0.5166 | 0.5282 | 0.7995 | 0.7995 | 0.7995 | | 0.8957 | 0.7782 | 200 | 0.6587 | 0.8291 | 0.8176 | 0.8179 | 0.8291 | 0.5871 | 0.5863 | 0.6064 | 0.8291 | 0.8291 | 0.8291 | | 0.6278 | 1.1673 | 300 | 0.5440 | 0.8457 | 0.8363 | 0.8395 | 0.8457 | 0.6407 | 0.6380 | 0.6622 | 0.8457 | 0.8457 | 0.8457 | | 0.5132 | 1.5564 | 400 | 0.5295 | 0.8362 | 0.8275 | 0.8355 | 0.8362 | 0.6593 | 0.6525 | 0.6857 | 0.8362 | 0.8362 | 0.8362 | | 0.4843 | 1.9455 | 500 | 0.4930 | 0.8511 | 0.8439 | 0.8500 | 0.8511 | 0.6777 | 0.6675 | 0.7028 | 0.8511 | 0.8511 | 0.8511 | | 0.39 | 2.3346 | 600 | 0.4827 | 0.8564 | 0.8521 | 0.8555 | 0.8564 | 0.7073 | 0.6989 | 0.7287 | 0.8564 | 0.8564 | 0.8564 | | 0.3536 | 2.7237 | 700 | 0.4818 | 0.8551 | 0.8492 | 0.8576 | 0.8551 | 0.7314 | 0.7421 | 0.7476 | 0.8551 | 0.8551 | 0.8551 | | 0.3462 | 3.1128 | 800 | 0.4826 | 0.8551 | 0.8501 | 0.8590 | 0.8551 | 0.7419 | 0.7334 | 0.7673 | 0.8551 | 0.8551 | 0.8551 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3