--- library_name: transformers license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- # results This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5650 - Accuracy: 0.8403 - F1: 0.8328 - Precision: 0.8416 - Recall: 0.8403 - F1 Macro: 0.6886 - Precision Macro: 0.6871 - Recall Macro: 0.7119 - F1 Micro: 0.8403 - Precision Micro: 0.8403 - Recall Micro: 0.8403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:| | 3.1687 | 0.3891 | 100 | 1.7221 | 0.6317 | 0.5563 | 0.5358 | 0.6317 | 0.2779 | 0.2937 | 0.2938 | 0.6317 | 0.6317 | 0.6317 | | 1.2239 | 0.7782 | 200 | 0.8836 | 0.7856 | 0.7633 | 0.7696 | 0.7856 | 0.5175 | 0.5077 | 0.5567 | 0.7856 | 0.7856 | 0.7856 | | 0.7758 | 1.1673 | 300 | 0.7089 | 0.8107 | 0.7922 | 0.7939 | 0.8107 | 0.5917 | 0.5889 | 0.6185 | 0.8107 | 0.8107 | 0.8107 | | 0.6436 | 1.5564 | 400 | 0.6498 | 0.8250 | 0.8136 | 0.8220 | 0.8250 | 0.6330 | 0.6331 | 0.6563 | 0.8250 | 0.8250 | 0.8250 | | 0.5815 | 1.9455 | 500 | 0.6037 | 0.8300 | 0.8227 | 0.8338 | 0.8300 | 0.6583 | 0.6478 | 0.6890 | 0.8300 | 0.8300 | 0.8300 | | 0.4695 | 2.3346 | 600 | 0.5771 | 0.8389 | 0.8319 | 0.8409 | 0.8389 | 0.6729 | 0.6688 | 0.6984 | 0.8389 | 0.8389 | 0.8389 | | 0.4336 | 2.7237 | 700 | 0.5724 | 0.8362 | 0.8280 | 0.8395 | 0.8362 | 0.6753 | 0.6682 | 0.7038 | 0.8362 | 0.8362 | 0.8362 | | 0.4135 | 3.1128 | 800 | 0.5650 | 0.8403 | 0.8328 | 0.8416 | 0.8403 | 0.6886 | 0.6871 | 0.7119 | 0.8403 | 0.8403 | 0.8403 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3