--- library_name: transformers license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: gbert_synset_classifier_amdi_tiny results: [] --- # gbert_synset_classifier_amdi_tiny This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6469 - Accuracy: 0.8376 - F1: 0.8366 - Precision: 0.8446 - Recall: 0.8376 - F1 Macro: 0.8202 - Precision Macro: 0.7900 - Recall Macro: 0.8625 - F1 Micro: 0.8376 - Precision Micro: 0.8376 - Recall Micro: 0.8376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:| | 2.7014 | 0.8584 | 100 | 1.1834 | 0.6919 | 0.6499 | 0.6573 | 0.6919 | 0.4964 | 0.5670 | 0.4997 | 0.6919 | 0.6919 | 0.6919 | | 0.7696 | 1.7167 | 200 | 0.5970 | 0.8241 | 0.8188 | 0.8227 | 0.8241 | 0.7784 | 0.7603 | 0.8062 | 0.8241 | 0.8241 | 0.8241 | | 0.4739 | 2.5751 | 300 | 0.5408 | 0.8321 | 0.8290 | 0.8381 | 0.8321 | 0.8082 | 0.7815 | 0.8508 | 0.8321 | 0.8321 | 0.8321 | | 0.3743 | 3.4335 | 400 | 0.5343 | 0.8426 | 0.8385 | 0.8480 | 0.8426 | 0.8269 | 0.8046 | 0.8598 | 0.8426 | 0.8426 | 0.8426 | | 0.2931 | 4.2918 | 500 | 0.5188 | 0.8469 | 0.8465 | 0.8516 | 0.8469 | 0.8312 | 0.8133 | 0.8552 | 0.8469 | 0.8469 | 0.8469 | | 0.2175 | 5.1502 | 600 | 0.5697 | 0.8426 | 0.8419 | 0.8506 | 0.8426 | 0.8295 | 0.8093 | 0.8572 | 0.8426 | 0.8426 | 0.8426 | | 0.1689 | 6.0086 | 700 | 0.5781 | 0.8426 | 0.8421 | 0.8470 | 0.8426 | 0.8322 | 0.8164 | 0.8540 | 0.8426 | 0.8426 | 0.8426 | | 0.1174 | 6.8670 | 800 | 0.6469 | 0.8376 | 0.8366 | 0.8446 | 0.8376 | 0.8202 | 0.7900 | 0.8625 | 0.8376 | 0.8376 | 0.8376 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3