Update README.md
Browse files
README.md
CHANGED
|
@@ -6,4 +6,94 @@ base_model:
|
|
| 6 |
- Qwen/Qwen2.5-3B-Instruct
|
| 7 |
- microsoft/Florence-2-large
|
| 8 |
pipeline_tag: image-to-text
|
| 9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
- Qwen/Qwen2.5-3B-Instruct
|
| 7 |
- microsoft/Florence-2-large
|
| 8 |
pipeline_tag: image-to-text
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Vision-Language-Vision Auto-Encoder
|
| 12 |
+
**Scalable Knowledge Distillation from Diffusion Models**
|
| 13 |
+
|
| 14 |
+
## Official Checkpoint · VLV Captioner (Qwen 2.5 3B)
|
| 15 |
+
|
| 16 |
+
This repository hosts the 3-billion-parameter **Vision-Language-Vision Captioner** model, distantly supervised by diffusion models and built on top of Qwen 2.5 3B.
|
| 17 |
+
Checkpoint URL: **<https://huggingface.co/lambertxiao/Vision-Language-Vision-Captioner-Qwen2.5-3B>**
|
| 18 |
+
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
## 1 · Install Dependencies
|
| 22 |
+
|
| 23 |
+
```bash
|
| 24 |
+
# inside your virtualenv / conda env
|
| 25 |
+
pip install -r requirements.txt
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
## 2 · Example Usage
|
| 29 |
+
```python
|
| 30 |
+
from transformers import AutoModel
|
| 31 |
+
from PIL import Image
|
| 32 |
+
import torch, numpy as np
|
| 33 |
+
|
| 34 |
+
MODEL_NAME = "lambertxiao/Vision-Language-Vision-Captioner-Qwen2.5-3B"
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
|
| 37 |
+
# ────── load model ──────
|
| 38 |
+
model = (
|
| 39 |
+
AutoModel.from_pretrained(
|
| 40 |
+
MODEL_NAME,
|
| 41 |
+
trust_remote_code=True,
|
| 42 |
+
low_cpu_mem_usage=False,
|
| 43 |
+
)
|
| 44 |
+
.to(device)
|
| 45 |
+
.eval()
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# ────── helpers ──────
|
| 49 |
+
def _trim_tail(text: str) -> str:
|
| 50 |
+
"""Remove an incomplete trailing sentence fragment, if any."""
|
| 51 |
+
sentences = [s.strip() for s in text.split(".") if s.strip()]
|
| 52 |
+
if not text.rstrip().endswith("."):
|
| 53 |
+
sentences = sentences[:-1] # drop dangling fragment
|
| 54 |
+
return ". ".join(sentences) + ("." if sentences else "")
|
| 55 |
+
|
| 56 |
+
def caption_image(img: Image.Image, max_len: int = 77) -> str:
|
| 57 |
+
"""Generate a caption for one PIL image."""
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
raw = model([img], max_len).generated_text[0]
|
| 60 |
+
return _trim_tail(raw)
|
| 61 |
+
|
| 62 |
+
def caption_from_numpy(arr: np.ndarray, max_len: int = 77) -> str:
|
| 63 |
+
"""
|
| 64 |
+
Wrapper for NumPy arrays.
|
| 65 |
+
Accepts uint8 [0, 255] or float [0, 1] ranges.
|
| 66 |
+
"""
|
| 67 |
+
if arr.dtype != np.uint8:
|
| 68 |
+
arr = (np.clip(arr, 0, 1) * 255).astype(np.uint8)
|
| 69 |
+
return caption_image(Image.fromarray(arr, mode="RGB"), max_len)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
## 3 · Quick Test
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
# caption a remote sample image (cat photo) in one cell
|
| 77 |
+
|
| 78 |
+
import io, requests
|
| 79 |
+
from PIL import Image
|
| 80 |
+
from IPython.display import display # Jupyter/Colab only
|
| 81 |
+
|
| 82 |
+
IMG_URL = "https://huggingface.co/datasets/huggingface/cats-image/resolve/main/cats_image.jpeg"
|
| 83 |
+
|
| 84 |
+
# download & open
|
| 85 |
+
img = Image.open(io.BytesIO(requests.get(IMG_URL, timeout=10).content)).convert("RGB")
|
| 86 |
+
|
| 87 |
+
display(img) # show the image
|
| 88 |
+
print(caption_image(img)) # generate and print the caption
|
| 89 |
+
|
| 90 |
+
```
|
| 91 |
+
## 4 · Citation
|
| 92 |
+
|
| 93 |
+
```bibtex
|
| 94 |
+
@article{zhang2025vision,
|
| 95 |
+
title = {Vision-Language-Vision Auto-Encoder: Scalable Knowledge Distillation from Diffusion Models},
|
| 96 |
+
author = {Zhang, Tiezheng and Li, Yitong and Chou, Yu-Cheng and Chen, Jieneng and Yuille, Alan and Wei, Chen and Xiao, Junfei},
|
| 97 |
+
journal = {arXiv preprint arXiv:2507.07104},
|
| 98 |
+
year = {2025}
|
| 99 |
+
}
|