Upload 11 files
Browse files- README.md +217 -3
- config.json +35 -0
- configuration_bert.py +168 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_bert.py +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,217 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- reranker
|
8 |
+
- cross-encoder
|
9 |
+
- transformers.js
|
10 |
+
pipeline_tag: text-classification
|
11 |
+
---
|
12 |
+
|
13 |
+
<br><br>
|
14 |
+
|
15 |
+
<p align="center">
|
16 |
+
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
|
17 |
+
</p>
|
18 |
+
|
19 |
+
<p align="center">
|
20 |
+
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
21 |
+
</p>
|
22 |
+
|
23 |
+
# jina-reranker-v1-tiny-en
|
24 |
+
|
25 |
+
This model is designed for **blazing-fast** reranking while maintaining **competitive performance**. What's more, it leverages the power of our [JinaBERT](https://arxiv.org/abs/2310.19923) model as its foundation. `JinaBERT` itself is a unique variant of the BERT architecture that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409). This allows `jina-reranker-v1-tiny-en` to process significantly longer sequences of text compared to other reranking models, up to an impressive **8,192** tokens.
|
26 |
+
|
27 |
+
To achieve the remarkable speed, the `jina-reranker-v1-tiny-en` employ a technique called knowledge distillation. Here, a complex, but slower, model (like our original [jina-reranker-v1-base-en](https://jina.ai/reranker/)) acts as a teacher, condensing its knowledge into a smaller, faster student model. This student retains most of the teacher's knowledge, allowing it to deliver similar accuracy in a fraction of the time.
|
28 |
+
|
29 |
+
Here's a breakdown of the reranker models we provide:
|
30 |
+
|
31 |
+
| Model Name | Layers | Hidden Size | Parameters (Millions) |
|
32 |
+
| ------------------------------------------------------------------------------------ | ------ | ----------- | --------------------- |
|
33 |
+
| [jina-reranker-v1-base-en](https://jina.ai/reranker/) | 12 | 768 | 137.0 |
|
34 |
+
| [jina-reranker-v1-turbo-en](https://huggingface.co/jinaai/jina-reranker-v1-turbo-en) | 6 | 384 | 37.8 |
|
35 |
+
| [jina-reranker-v1-tiny-en](https://huggingface.co/jinaai/jina-reranker-v1-tiny-en) | 4 | 384 | 33.0 |
|
36 |
+
|
37 |
+
> Currently, the `jina-reranker-v1-base-en` model is not available on Hugging Face. You can access it via the [Jina AI Reranker API](https://jina.ai/reranker/).
|
38 |
+
|
39 |
+
As you can see, the `jina-reranker-v1-turbo-en` offers a balanced approach with **6 layers** and **37.8 million** parameters. This translates to fast search and reranking while preserving a high degree of accuracy. The `jina-reranker-v1-tiny-en` prioritizes speed even further, achieving the fastest inference speeds with its **4-layer**, **33.0 million** parameter architecture. This makes it ideal for scenarios where absolute top accuracy is less crucial.
|
40 |
+
|
41 |
+
# Usage
|
42 |
+
|
43 |
+
1. The easiest way to starting using `jina-reranker-v1-tiny-en` is to use Jina AI's [Reranker API](https://jina.ai/reranker/).
|
44 |
+
|
45 |
+
```bash
|
46 |
+
curl https://api.jina.ai/v1/rerank \
|
47 |
+
-H "Content-Type: application/json" \
|
48 |
+
-H "Authorization: Bearer YOUR_API_KEY" \
|
49 |
+
-d '{
|
50 |
+
"model": "jina-reranker-v1-tiny-en",
|
51 |
+
"query": "Organic skincare products for sensitive skin",
|
52 |
+
"documents": [
|
53 |
+
"Eco-friendly kitchenware for modern homes",
|
54 |
+
"Biodegradable cleaning supplies for eco-conscious consumers",
|
55 |
+
"Organic cotton baby clothes for sensitive skin",
|
56 |
+
"Natural organic skincare range for sensitive skin",
|
57 |
+
"Tech gadgets for smart homes: 2024 edition",
|
58 |
+
"Sustainable gardening tools and compost solutions",
|
59 |
+
"Sensitive skin-friendly facial cleansers and toners",
|
60 |
+
"Organic food wraps and storage solutions",
|
61 |
+
"All-natural pet food for dogs with allergies",
|
62 |
+
"Yoga mats made from recycled materials"
|
63 |
+
],
|
64 |
+
"top_n": 3
|
65 |
+
}'
|
66 |
+
```
|
67 |
+
|
68 |
+
2. Alternatively, you can use the latest version of the `sentence-transformers>=0.27.0` library. You can install it via pip:
|
69 |
+
|
70 |
+
```bash
|
71 |
+
pip install -U sentence-transformers
|
72 |
+
```
|
73 |
+
|
74 |
+
Then, you can use the following code to interact with the model:
|
75 |
+
|
76 |
+
```python
|
77 |
+
from sentence_transformers import CrossEncoder
|
78 |
+
|
79 |
+
# Load the model, here we use our tiny sized model
|
80 |
+
model = CrossEncoder("jinaai/jina-reranker-v1-tiny-en", trust_remote_code=True)
|
81 |
+
|
82 |
+
# Example query and documents
|
83 |
+
query = "Organic skincare products for sensitive skin"
|
84 |
+
documents = [
|
85 |
+
"Eco-friendly kitchenware for modern homes",
|
86 |
+
"Biodegradable cleaning supplies for eco-conscious consumers",
|
87 |
+
"Organic cotton baby clothes for sensitive skin",
|
88 |
+
"Natural organic skincare range for sensitive skin",
|
89 |
+
"Tech gadgets for smart homes: 2024 edition",
|
90 |
+
"Sustainable gardening tools and compost solutions",
|
91 |
+
"Sensitive skin-friendly facial cleansers and toners",
|
92 |
+
"Organic food wraps and storage solutions",
|
93 |
+
"All-natural pet food for dogs with allergies",
|
94 |
+
"Yoga mats made from recycled materials"
|
95 |
+
]
|
96 |
+
|
97 |
+
results = model.rank(query, documents, return_documents=True, top_k=3)
|
98 |
+
```
|
99 |
+
|
100 |
+
3. You can also use the `transformers` library to interact with the model programmatically.
|
101 |
+
|
102 |
+
```python
|
103 |
+
!pip install transformers
|
104 |
+
from transformers import AutoModelForSequenceClassification
|
105 |
+
|
106 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
107 |
+
'jinaai/jina-reranker-v1-tiny-en', num_labels=1, trust_remote_code=True
|
108 |
+
)
|
109 |
+
|
110 |
+
# Example query and documents
|
111 |
+
query = "Organic skincare products for sensitive skin"
|
112 |
+
documents = [
|
113 |
+
"Eco-friendly kitchenware for modern homes",
|
114 |
+
"Biodegradable cleaning supplies for eco-conscious consumers",
|
115 |
+
"Organic cotton baby clothes for sensitive skin",
|
116 |
+
"Natural organic skincare range for sensitive skin",
|
117 |
+
"Tech gadgets for smart homes: 2024 edition",
|
118 |
+
"Sustainable gardening tools and compost solutions",
|
119 |
+
"Sensitive skin-friendly facial cleansers and toners",
|
120 |
+
"Organic food wraps and storage solutions",
|
121 |
+
"All-natural pet food for dogs with allergies",
|
122 |
+
"Yoga mats made from recycled materials"
|
123 |
+
]
|
124 |
+
|
125 |
+
# construct sentence pairs
|
126 |
+
sentence_pairs = [[query, doc] for doc in documents]
|
127 |
+
|
128 |
+
scores = model.compute_score(sentence_pairs)
|
129 |
+
```
|
130 |
+
|
131 |
+
4. You can also use the `transformers.js` library to run the model directly in JavaScript (in-browser, Node.js, Deno, etc.)!
|
132 |
+
|
133 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
134 |
+
```bash
|
135 |
+
npm i @xenova/transformers
|
136 |
+
```
|
137 |
+
|
138 |
+
Then, you can use the following code to interact with the model:
|
139 |
+
```js
|
140 |
+
import { AutoTokenizer, AutoModelForSequenceClassification } from '@xenova/transformers';
|
141 |
+
|
142 |
+
const model_id = 'jinaai/jina-reranker-v1-tiny-en';
|
143 |
+
const model = await AutoModelForSequenceClassification.from_pretrained(model_id, { quantized: false });
|
144 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
145 |
+
|
146 |
+
/**
|
147 |
+
* Performs ranking with the CrossEncoder on the given query and documents. Returns a sorted list with the document indices and scores.
|
148 |
+
* @param {string} query A single query
|
149 |
+
* @param {string[]} documents A list of documents
|
150 |
+
* @param {Object} options Options for ranking
|
151 |
+
* @param {number} [options.top_k=undefined] Return the top-k documents. If undefined, all documents are returned.
|
152 |
+
* @param {number} [options.return_documents=false] If true, also returns the documents. If false, only returns the indices and scores.
|
153 |
+
*/
|
154 |
+
async function rank(query, documents, {
|
155 |
+
top_k = undefined,
|
156 |
+
return_documents = false,
|
157 |
+
} = {}) {
|
158 |
+
const inputs = tokenizer(
|
159 |
+
new Array(documents.length).fill(query),
|
160 |
+
{ text_pair: documents, padding: true, truncation: true }
|
161 |
+
)
|
162 |
+
const { logits } = await model(inputs);
|
163 |
+
return logits.sigmoid().tolist()
|
164 |
+
.map(([score], i) => ({
|
165 |
+
corpus_id: i,
|
166 |
+
score,
|
167 |
+
...(return_documents ? { text: documents[i] } : {})
|
168 |
+
})).sort((a, b) => b.score - a.score).slice(0, top_k);
|
169 |
+
}
|
170 |
+
|
171 |
+
// Example usage:
|
172 |
+
const query = "Organic skincare products for sensitive skin"
|
173 |
+
const documents = [
|
174 |
+
"Eco-friendly kitchenware for modern homes",
|
175 |
+
"Biodegradable cleaning supplies for eco-conscious consumers",
|
176 |
+
"Organic cotton baby clothes for sensitive skin",
|
177 |
+
"Natural organic skincare range for sensitive skin",
|
178 |
+
"Tech gadgets for smart homes: 2024 edition",
|
179 |
+
"Sustainable gardening tools and compost solutions",
|
180 |
+
"Sensitive skin-friendly facial cleansers and toners",
|
181 |
+
"Organic food wraps and storage solutions",
|
182 |
+
"All-natural pet food for dogs with allergies",
|
183 |
+
"Yoga mats made from recycled materials",
|
184 |
+
]
|
185 |
+
|
186 |
+
const results = await rank(query, documents, { return_documents: true, top_k: 3 });
|
187 |
+
console.log(results);
|
188 |
+
```
|
189 |
+
|
190 |
+
|
191 |
+
That's it! You can now use the `jina-reranker-v1-tiny-en` model in your projects.
|
192 |
+
|
193 |
+
# Evaluation
|
194 |
+
|
195 |
+
We evaluated Jina Reranker on 3 key benchmarks to ensure top-tier performance and search relevance.
|
196 |
+
|
197 |
+
| Model Name | NDCG@10 (17 BEIR datasets) | NDCG@10 (5 LoCo datasets) | Hit Rate (LlamaIndex RAG) |
|
198 |
+
| ------------------------------------------ | -------------------------- | ------------------------- | ------------------------- |
|
199 |
+
| `jina-reranker-v1-base-en` | **52.45** | **87.31** | **85.53** |
|
200 |
+
| `jina-reranker-v1-turbo-en` | **49.60** | **69.21** | **85.13** |
|
201 |
+
| `jina-reranker-v1-tiny-en` (you are here) | **48.54** | **70.29** | **85.00** |
|
202 |
+
| `mxbai-rerank-base-v1` | 49.19 | - | 82.50 |
|
203 |
+
| `mxbai-rerank-xsmall-v1` | 48.80 | - | 83.69 |
|
204 |
+
| `ms-marco-MiniLM-L-6-v2` | 48.64 | - | 82.63 |
|
205 |
+
| `ms-marco-MiniLM-L-4-v2` | 47.81 | - | 83.82 |
|
206 |
+
| `bge-reranker-base` | 47.89 | - | 83.03 |
|
207 |
+
|
208 |
+
**Note:**
|
209 |
+
|
210 |
+
- `NDCG@10` is a measure of ranking quality, with higher scores indicating better search results. `Hit Rate` measures the percentage of relevant documents that appear in the top 10 search results.
|
211 |
+
- The results of LoCo datasets on other models are not available since they **do not support** long documents more than 512 tokens.
|
212 |
+
|
213 |
+
For more details, please refer to our [benchmarking sheets](https://docs.google.com/spreadsheets/d/1V8pZjENdBBqrKMzZzOWc2aL60wtnR0yrEBY3urfO5P4/edit?usp=sharing).
|
214 |
+
|
215 |
+
# Contact
|
216 |
+
|
217 |
+
Join our [Discord community](https://discord.jina.ai/) and chat with other community members about ideas.
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jinaai/jina-bert-implementation",
|
3 |
+
"architectures": ["JinaBertModel"],
|
4 |
+
"attention_probs_dropout_prob": 0.1,
|
5 |
+
"attn_implementation": "torch",
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_bert.JinaBertConfig",
|
8 |
+
"AutoModel": "modeling_bert.JinaBertModel",
|
9 |
+
"AutoModelForMaskedLM": "modeling_bert.JinaBertForMaskedLM",
|
10 |
+
"AutoModelForQuestionAnswering": "modeling_bert.JinaBertForQuestionAnswering",
|
11 |
+
"AutoModelForSequenceClassification": "modeling_bert.JinaBertForSequenceClassification",
|
12 |
+
"AutoModelForTokenClassification": "modeling_bert.JinaBertForTokenClassification"
|
13 |
+
},
|
14 |
+
"classifier_dropout": null,
|
15 |
+
"emb_pooler": "mean",
|
16 |
+
"feed_forward_type": "geglu",
|
17 |
+
"gradient_checkpointing": false,
|
18 |
+
"hidden_act": "gelu",
|
19 |
+
"hidden_dropout_prob": 0.1,
|
20 |
+
"hidden_size": 384,
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 1536,
|
23 |
+
"layer_norm_eps": 1e-12,
|
24 |
+
"max_position_embeddings": 8192,
|
25 |
+
"model_type": "bert",
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_hidden_layers": 4,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"position_embedding_type": "alibi",
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.30.2",
|
32 |
+
"type_vocab_size": 2,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 61056
|
35 |
+
}
|
configuration_bert.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
# Copyright (c) 2023 Jina AI GmbH. All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" BERT model configuration"""
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import Mapping
|
20 |
+
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from transformers.onnx import OnnxConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class JinaBertConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`JinaBertModel`]. It is used to
|
32 |
+
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the BERT
|
34 |
+
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
42 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
51 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
52 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
53 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
54 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
55 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
57 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout ratio for the attention probabilities.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
63 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
67 |
+
The epsilon used by the layer normalization layers.
|
68 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
69 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
70 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
71 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
72 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
73 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
74 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
78 |
+
relevant if `config.is_decoder=True`.
|
79 |
+
classifier_dropout (`float`, *optional*):
|
80 |
+
The dropout ratio for the classification head.
|
81 |
+
feed_forward_type (`str`, *optional*, defaults to `"original"`):
|
82 |
+
The type of feed forward layer to use in the bert layers.
|
83 |
+
Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
|
84 |
+
emb_pooler (`str`, *optional*, defaults to `None`):
|
85 |
+
The function to use for pooling the last layer embeddings to get the sentence embeddings.
|
86 |
+
Should be one of `None`, `"mean"`.
|
87 |
+
attn_implementation (`str`, *optional*, defaults to `"torch"`):
|
88 |
+
The implementation of the self-attention layer. Can be one of:
|
89 |
+
- `None` for the original implementation,
|
90 |
+
- `torch` for the PyTorch SDPA implementation,
|
91 |
+
|
92 |
+
Examples:
|
93 |
+
|
94 |
+
```python
|
95 |
+
>>> from transformers import JinaBertConfig, JinaBertModel
|
96 |
+
|
97 |
+
>>> # Initializing a JinaBert configuration
|
98 |
+
>>> configuration = JinaBertConfig()
|
99 |
+
|
100 |
+
>>> # Initializing a model (with random weights) from the configuration
|
101 |
+
>>> model = JinaBertModel(configuration)
|
102 |
+
|
103 |
+
>>> # Accessing the model configuration
|
104 |
+
>>> configuration = model.config
|
105 |
+
|
106 |
+
>>> # Encode text inputs
|
107 |
+
>>> embeddings = model.encode(text_inputs)
|
108 |
+
```"""
|
109 |
+
model_type = "bert"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=30522,
|
114 |
+
hidden_size=768,
|
115 |
+
num_hidden_layers=12,
|
116 |
+
num_attention_heads=12,
|
117 |
+
intermediate_size=3072,
|
118 |
+
hidden_act="gelu",
|
119 |
+
hidden_dropout_prob=0.1,
|
120 |
+
attention_probs_dropout_prob=0.1,
|
121 |
+
max_position_embeddings=512,
|
122 |
+
type_vocab_size=2,
|
123 |
+
initializer_range=0.02,
|
124 |
+
layer_norm_eps=1e-12,
|
125 |
+
pad_token_id=0,
|
126 |
+
position_embedding_type="absolute",
|
127 |
+
use_cache=True,
|
128 |
+
classifier_dropout=None,
|
129 |
+
feed_forward_type="original",
|
130 |
+
emb_pooler=None,
|
131 |
+
attn_implementation='torch',
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
135 |
+
|
136 |
+
self.vocab_size = vocab_size
|
137 |
+
self.hidden_size = hidden_size
|
138 |
+
self.num_hidden_layers = num_hidden_layers
|
139 |
+
self.num_attention_heads = num_attention_heads
|
140 |
+
self.hidden_act = hidden_act
|
141 |
+
self.intermediate_size = intermediate_size
|
142 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
143 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
144 |
+
self.max_position_embeddings = max_position_embeddings
|
145 |
+
self.type_vocab_size = type_vocab_size
|
146 |
+
self.initializer_range = initializer_range
|
147 |
+
self.layer_norm_eps = layer_norm_eps
|
148 |
+
self.position_embedding_type = position_embedding_type
|
149 |
+
self.use_cache = use_cache
|
150 |
+
self.classifier_dropout = classifier_dropout
|
151 |
+
self.feed_forward_type = feed_forward_type
|
152 |
+
self.emb_pooler = emb_pooler
|
153 |
+
self.attn_implementation = attn_implementation
|
154 |
+
|
155 |
+
class JinaBertOnnxConfig(OnnxConfig):
|
156 |
+
@property
|
157 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
158 |
+
if self.task == "multiple-choice":
|
159 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
160 |
+
else:
|
161 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
162 |
+
return OrderedDict(
|
163 |
+
[
|
164 |
+
("input_ids", dynamic_axis),
|
165 |
+
("attention_mask", dynamic_axis),
|
166 |
+
("token_type_ids", dynamic_axis),
|
167 |
+
]
|
168 |
+
)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7e9ea4e0b0879e9624fd0606f02b85384fe209ce5bc7cf5daecaf7e3fecf82f
|
3 |
+
size 66100274
|
modeling_bert.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77bbb3421aa3dca1886e8adcd0731bc1ca529a233266a4183278e43dffcaced8
|
3 |
+
size 66106938
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "<unk>"
|
57 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|