|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch LLaVA-One-Vision-1.5 model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.nn import LayerNorm |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import auto_docstring, can_return_tuple, is_torch_flex_attn_available, is_torchdynamo_compiling, logging |
|
from transformers.integrations import use_kernel_forward_from_hub |
|
from transformers.processing_utils import Unpack |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers import AutoModelForCausalLM, AutoConfig |
|
from .configuration_llavaonevision1_5 import Llavaonevision1_5Config, LLaVAOneVision1_5_TextConfig, RiceConfig |
|
|
|
|
|
if is_flash_attn_available(): |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward, flash_attn_varlen_func |
|
|
|
if is_torch_flex_attn_available(): |
|
from torch.nn.attention.flex_attention import BlockMask |
|
|
|
from transformers.integrations.flex_attention import make_flex_block_causal_mask |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class LLaVAOneVision1_5_ModelOutputWithPast(ModelOutput): |
|
""" |
|
Base class for Llava outputs, with hidden states and attentions. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
The rope index difference between sequence length and multimodal rope. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
rope_deltas: Optional[torch.LongTensor] = None |
|
|
|
|
|
@dataclass |
|
class LLaVAOneVision1_5_CausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for LLaVAOneVision1.5 causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
The rope index difference between sequence length and multimodal rope. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
rope_deltas: Optional[torch.LongTensor] = None |
|
|
|
|
|
class LLaVAOneVision1_5_RotaryEmbedding(nn.Module): |
|
def __init__(self, config: LLaVAOneVision1_5_TextConfig, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_rotary_pos_emb_vision( |
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
orig_q_dtype = q.dtype |
|
orig_k_dtype = k.dtype |
|
q, k = q.float(), k.float() |
|
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
q_embed = q_embed.to(orig_q_dtype) |
|
k_embed = k_embed.to(orig_k_dtype) |
|
return q_embed, k_embed |
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class RiceRotaryEmbedding(nn.Module): |
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
super().__init__() |
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(seq, self.inv_freq) |
|
return freqs |
|
|
|
|
|
class RicePatchEmbed(nn.Module): |
|
def __init__( |
|
self, |
|
patch_size: int = 14, |
|
temporal_patch_size: int = 2, |
|
in_channels: int = 3, |
|
embed_dim: int = 1152, |
|
) -> None: |
|
super().__init__() |
|
self.patch_size = patch_size |
|
self.temporal_patch_size = 1 |
|
self.in_channels = in_channels |
|
self.embed_dim = embed_dim |
|
|
|
kernel_size = [patch_size, patch_size] |
|
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
target_dtype = self.proj.weight.dtype |
|
hidden_states = hidden_states.view( |
|
-1, self.in_channels, self.patch_size, self.patch_size |
|
) |
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) |
|
return hidden_states |
|
|
|
|
|
class RicePatchMerger(nn.Module): |
|
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2, layer_norm_eps: float = 1e-05) -> None: |
|
super().__init__() |
|
self.hidden_size = context_dim * (spatial_merge_size**2) |
|
self.ln_q = LayerNorm(context_dim, eps=layer_norm_eps) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(self.hidden_size, self.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(self.hidden_size, dim), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) |
|
return x |
|
|
|
|
|
class RiceMlp(nn.Module): |
|
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None: |
|
super().__init__() |
|
self.fc1 = nn.Linear(dim, hidden_dim) |
|
self.act = ACT2FN[hidden_act] |
|
self.fc2 = nn.Linear(hidden_dim, dim) |
|
|
|
def forward(self, x) -> torch.Tensor: |
|
return self.fc2(self.act(self.fc1(x))) |
|
|
|
|
|
class RiceAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 16) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=True) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
if position_embeddings is None: |
|
logger.warning_once( |
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally " |
|
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed " |
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be " |
|
"removed and `position_embeddings` will be mandatory." |
|
) |
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
else: |
|
cos, sin = position_embeddings |
|
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin) |
|
|
|
attention_mask = torch.full( |
|
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype |
|
) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0 |
|
|
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) |
|
attn_weights = attn_weights + attention_mask |
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) |
|
attn_output = torch.matmul(attn_weights, v) |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
|
|
class RiceFlashAttention2(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 16) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=True) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
if position_embeddings is None: |
|
logger.warning_once( |
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally " |
|
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed " |
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be " |
|
"removed and `position_embeddings` will be mandatory." |
|
) |
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
else: |
|
cos, sin = position_embeddings |
|
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin) |
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( |
|
seq_length, -1 |
|
) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
|
|
class RiceSdpaAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 16) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=True) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
if position_embeddings is None: |
|
logger.warning_once( |
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally " |
|
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed " |
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be " |
|
"removed and `position_embeddings` will be mandatory." |
|
) |
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
else: |
|
cos, sin = position_embeddings |
|
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin) |
|
|
|
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True |
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
attn_output = F.scaled_dot_product_attention( |
|
q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attention_mask, dropout_p=0.0 |
|
) |
|
attn_output = attn_output.squeeze(0).transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
|
|
RICE_ATTENTION_CLASSES = { |
|
"eager": RiceAttention, |
|
"flash_attention_2": RiceFlashAttention2, |
|
"sdpa": RiceSdpaAttention, |
|
} |
|
|
|
|
|
class RiceBlock(nn.Module): |
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None: |
|
super().__init__() |
|
self.norm1 = LayerNorm(config.hidden_size, eps=1e-5) |
|
self.norm2 = LayerNorm(config.hidden_size, eps=1e-5) |
|
mlp_hidden_dim = int(config.intermediate_size) |
|
|
|
self.attn = RICE_ATTENTION_CLASSES[attn_implementation]( |
|
config.hidden_size, num_heads=config.num_heads |
|
) |
|
self.mlp = RiceMlp(dim=config.hidden_size, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
hidden_states = hidden_states + self.attn( |
|
self.norm1(hidden_states), |
|
cu_seqlens=cu_seqlens, |
|
rotary_pos_emb=rotary_pos_emb, |
|
position_embeddings=position_embeddings, |
|
) |
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) |
|
return hidden_states |
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
class LLaVAOneVision1_5_RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LLaVAOneVision1_5_RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
class LLaVAOneVision1_5_MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class LLaVAOneVision1_5_Attention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: LLaVAOneVision1_5_TextConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = self.head_dim**-0.5 |
|
self.attention_dropout = config.attention_dropout |
|
self.is_causal = True |
|
|
|
self.q_proj = nn.Linear( |
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.v_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.o_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
) |
|
self.q_norm = LLaVAOneVision1_5_RMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
self.k_norm = LLaVAOneVision1_5_RMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
if query_states.dtype == torch.float16: |
|
attn_weights = torch.where(torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, input_shape[1], self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, input_shape[1], self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(*input_shape, -1) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class LLaVAOneVision1_5_FlashAttention2(LLaVAOneVision1_5_Attention): |
|
""" |
|
LLaVAOneVision1_5 flash attention module, following Qwen2VL attention module. This module inherits from `LLaVAOneVision1_5_Attention` |
|
as the weights of the module stays untouched. The only required change would be on the forward pass |
|
where it needs to correctly call the public API of flash attention and deal with padding tokens |
|
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom |
|
config.max_window_layers layers. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
): |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
if ( |
|
self.config.use_sliding_window |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and self.layer_idx >= self.config.max_window_layers |
|
): |
|
sliding_window = self.config.sliding_window |
|
else: |
|
sliding_window = None |
|
|
|
attn_output = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
input_shape[1], |
|
dropout=dropout_rate, |
|
sliding_window=sliding_window, |
|
is_causal=self.is_causal, |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class LLaVAOneVision1_5_SdpaAttention(LLaVAOneVision1_5_Attention): |
|
""" |
|
LLaVAOneVision1_51.5 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`LLaVAOneVision1_5_Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"RiceVLModel is using RiceVLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and input_shape[1] > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(*input_shape, -1) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
LLaVAOneVision1_5_ATTENTION_CLASSES = { |
|
"eager": LLaVAOneVision1_5_Attention, |
|
"flash_attention_2": LLaVAOneVision1_5_FlashAttention2, |
|
"sdpa": LLaVAOneVision1_5_SdpaAttention, |
|
} |
|
|
|
|
|
class LLaVAOneVision1_5_DecoderLayer(nn.Module): |
|
def __init__(self, config: LLaVAOneVision1_5_TextConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
if config.use_sliding_window and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered." |
|
) |
|
self.self_attn = LLaVAOneVision1_5_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.mlp = LLaVAOneVision1_5_MLP(config) |
|
self.input_layernorm = LLaVAOneVision1_5_RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LLaVAOneVision1_5_RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
with `head_dim` being the embedding dimension of each attention head. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
@auto_docstring |
|
class Qwen2VLPreTrainedModel(PreTrainedModel): |
|
config_class = Llavaonevision1_5Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LLaVAOneVision1_5_DecoderLayer", "RiceBlock"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.get_text_config().initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv3d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.weight.data.fill_(1.0) |
|
module.bias.data.zero_() |
|
elif isinstance(module, LLaVAOneVision1_5_RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
@auto_docstring |
|
class RiceTransformerPretrainedModel(Qwen2VLPreTrainedModel): |
|
config_class = RiceConfig |
|
_no_split_modules = ["RiceBlock"] |
|
|
|
def __init__(self, config) -> None: |
|
super().__init__(config) |
|
self.spatial_merge_size = config.spatial_merge_size |
|
self.patch_size = config.patch_size |
|
self.patch_embed = RicePatchEmbed( |
|
patch_size=config.patch_size, |
|
temporal_patch_size=config.temporal_patch_size, |
|
in_channels=config.in_channels, |
|
embed_dim=config.hidden_size, |
|
) |
|
|
|
head_dim = config.hidden_size // config.num_heads |
|
self.rotary_pos_emb = RiceRotaryEmbedding(head_dim // 2) |
|
|
|
scale = config.hidden_size ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(config.hidden_size)) |
|
self.class_pos_emb = nn.Parameter(torch.randn(1, head_dim // 2)) |
|
|
|
self.window_size = None |
|
|
|
self.pre_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.blocks = nn.ModuleList( |
|
[RiceBlock(config, config._attn_implementation) for _ in range(config.depth)] |
|
) |
|
self.merger = RicePatchMerger( |
|
dim=config.text_hidden_size, context_dim=config.hidden_size, spatial_merge_size=config.spatial_merge_size, layer_norm_eps = config.layer_norm_eps |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def get_dtype(self) -> torch.dtype: |
|
return self.blocks[0].mlp.fc2.weight.dtype |
|
|
|
def get_device(self) -> torch.device: |
|
return self.blocks[0].mlp.fc2.weight.device |
|
|
|
def rot_pos_emb(self, grid_thw): |
|
pos_ids = [] |
|
for t, h, w in grid_thw: |
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) |
|
hpos_ids = hpos_ids.reshape( |
|
h // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
w // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
) |
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3) |
|
hpos_ids = hpos_ids.flatten() |
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) |
|
wpos_ids = wpos_ids.reshape( |
|
h // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
w // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
) |
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3) |
|
wpos_ids = wpos_ids.flatten() |
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) |
|
pos_ids = torch.cat(pos_ids, dim=0) |
|
max_grid_size = grid_thw[:, 1:].max() |
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) |
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) |
|
return rotary_pos_emb |
|
|
|
def get_window_index(self, grid_thw): |
|
window_index: list = [] |
|
cu_window_seqlens: list = [0] |
|
window_index_id = 0 |
|
vit_window_size = self.window_size // self.patch_size |
|
|
|
for grid_t, grid_h, grid_w in grid_thw: |
|
llm_grid_h, llm_grid_w = ( |
|
grid_h, |
|
grid_w, |
|
) |
|
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w) |
|
pad_h = vit_window_size - llm_grid_h % vit_window_size |
|
pad_w = vit_window_size - llm_grid_w % vit_window_size |
|
num_windows_h = (llm_grid_h + pad_h) // vit_window_size |
|
num_windows_w = (llm_grid_w + pad_w) // vit_window_size |
|
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100) |
|
index_padded = index_padded.reshape( |
|
grid_t, |
|
num_windows_h, |
|
vit_window_size, |
|
num_windows_w, |
|
vit_window_size, |
|
) |
|
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape( |
|
grid_t, |
|
num_windows_h * num_windows_w, |
|
vit_window_size, |
|
vit_window_size, |
|
) |
|
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1) |
|
index_padded = index_padded.reshape(-1) |
|
index_new = index_padded[index_padded != -100] |
|
window_index.append(index_new + window_index_id) |
|
cu_seqlens_tmp = seqlens.cumsum(0) + cu_window_seqlens[-1] |
|
cu_window_seqlens.extend(cu_seqlens_tmp.tolist()) |
|
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item() |
|
window_index = torch.cat(window_index, dim=0) |
|
|
|
return window_index, cu_window_seqlens |
|
|
|
@auto_docstring |
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
grid_thw (`torch.LongTensor` of shape `(num_images, 3)`): |
|
The temporal, height and width dimensions of feature shape for each image. Each row contains [t, h, w] values. |
|
""" |
|
hidden_states = self.patch_embed(hidden_states) |
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
img_feats = hidden_states.shape[0] |
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( |
|
dim=0, |
|
|
|
|
|
|
|
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
) |
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
cu = cu_seqlens.to(torch.long) |
|
num_segments = cu.numel() - 1 |
|
cls_token = self.class_embedding.to(hidden_states.dtype).unsqueeze(0) |
|
|
|
total_patches = cu[-1].item() |
|
new_total = total_patches + num_segments |
|
D = hidden_states.size(-1) |
|
new_hidden = hidden_states.new_empty((new_total, D)) |
|
new_rotary_pos_emb = rotary_pos_emb.new_empty((new_total, rotary_pos_emb.shape[-1])) |
|
|
|
write_ptr = 0 |
|
new_cu = [0] |
|
for i in range(1, num_segments + 1): |
|
seg_start = cu[i-1].item() |
|
seg_end = cu[i].item() |
|
seg_len = seg_end - seg_start |
|
new_hidden[write_ptr] = cls_token |
|
new_rotary_pos_emb[write_ptr] = self.class_pos_emb |
|
new_hidden[write_ptr + 1: write_ptr + 1 + seg_len] = hidden_states[seg_start:seg_end] |
|
new_rotary_pos_emb[write_ptr + 1: write_ptr + 1 + seg_len] = rotary_pos_emb[seg_start:seg_end] |
|
write_ptr += 1 + seg_len |
|
new_cu.append(write_ptr) |
|
|
|
hidden_states = new_hidden |
|
cu_seqlens = torch.tensor(new_cu, device=hidden_states.device, dtype=torch.int32) |
|
rotary_pos_emb = new_rotary_pos_emb |
|
|
|
hidden_states = self.pre_layernorm(hidden_states) |
|
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
for blk in self.blocks: |
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func( |
|
blk.__call__, hidden_states, cu_seqlens, None, position_embeddings |
|
) |
|
else: |
|
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings) |
|
|
|
new_hidden = hidden_states.new_empty((img_feats, D)) |
|
|
|
for i in range(1, num_segments + 1): |
|
seg_start = cu[i-1].item() |
|
seg_end = cu[i].item() |
|
new_hidden[seg_start:seg_end] = hidden_states[seg_start+1:seg_end+1] |
|
hidden_states = new_hidden |
|
|
|
return self.merger(hidden_states) |
|
|
|
|
|
@auto_docstring |
|
class LLaVAOneVision1_5_TextModel(Qwen2VLPreTrainedModel): |
|
config_class = LLaVAOneVision1_5_TextConfig |
|
|
|
def __init__(self, config: LLaVAOneVision1_5_TextConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[LLaVAOneVision1_5_DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = LLaVAOneVision1_5_RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = LLaVAOneVision1_5_RotaryEmbedding(config=config) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
if use_cache and past_key_values is None and not torch.jit.is_tracing(): |
|
past_key_values = DynamicCache() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
|
|
if position_ids is None: |
|
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) |
|
|
|
|
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: Union[torch.Tensor, "BlockMask"], |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool = False, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and past_key_values is not None: |
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of LLaVAOneVision1.5. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
if self.config._attn_implementation == "flex_attention": |
|
if isinstance(attention_mask, torch.Tensor): |
|
attention_mask = make_flex_block_causal_mask(attention_mask) |
|
return attention_mask |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and not (using_static_cache or using_sliding_window_cache) |
|
and not output_attentions |
|
): |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
sliding_window=self.config.sliding_window, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype = input_tensor.dtype |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
|
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
config=self.config, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu", "npu"] |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
config: Llavaonevision1_5Config, |
|
past_key_values: Cache, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
config (`Llavaonevision1_5Config`): |
|
The model's configuration class |
|
past_key_values (`Cache`): |
|
The cache class that is being used currently to generate |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
) |
|
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape( |
|
-1, 1 |
|
) |
|
text_config = config.get_text_config() |
|
if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None: |
|
|
|
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= ( |
|
cache_position.reshape(-1, 1) - text_config.sliding_window |
|
) |
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
causal_mask *= diagonal_attend_mask |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
if attention_mask.shape[-1] > target_length: |
|
attention_mask = attention_mask[:, :target_length] |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
|
|
@auto_docstring |
|
class LLaVAOneVision1_5_Model(Qwen2VLPreTrainedModel): |
|
base_model_prefix = "" |
|
_checkpoint_conversion_mapping = {"^model": "language_model"} |
|
|
|
def __init__(self, config: Llavaonevision1_5Config): |
|
super().__init__(config) |
|
self.visual = RiceTransformerPretrainedModel._from_config(config.vision_config) |
|
self.language_model = LLaVAOneVision1_5_TextModel._from_config(config.text_config) |
|
self.rope_deltas = None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_rope_index( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Calculate the 3D rope index based on image and video's temporal, height and width in LLM. |
|
|
|
Explanation: |
|
Each embedding sequence contains vision embedding and text embedding or just contains text embedding. |
|
|
|
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs. |
|
Examples: |
|
input_ids: [T T T T T], here T is for text. |
|
temporal position_ids: [0, 1, 2, 3, 4] |
|
height position_ids: [0, 1, 2, 3, 4] |
|
width position_ids: [0, 1, 2, 3, 4] |
|
|
|
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part |
|
and 1D rotary position embedding for text part. |
|
Examples: |
|
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches. |
|
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. |
|
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] |
|
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] |
|
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] |
|
text temporal position_ids: [3, 4, 5, 6, 7] |
|
text height position_ids: [3, 4, 5, 6, 7] |
|
text width position_ids: [3, 4, 5, 6, 7] |
|
Here we calculate the text start position_ids as the max vision position_ids plus 1. |
|
|
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each image in LLM. |
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each video in LLM. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
Returns: |
|
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) |
|
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) |
|
""" |
|
spatial_merge_size = self.config.vision_config.spatial_merge_size |
|
image_token_id = self.config.image_token_id |
|
video_token_id = self.config.video_token_id |
|
vision_start_token_id = self.config.vision_start_token_id |
|
mrope_position_deltas = [] |
|
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): |
|
total_input_ids = input_ids |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(total_input_ids) |
|
position_ids = torch.ones( |
|
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device |
|
) |
|
image_index, video_index = 0, 0 |
|
for i, input_ids in enumerate(total_input_ids): |
|
input_ids = input_ids[attention_mask[i].to(input_ids.device) == 1] |
|
image_nums, video_nums = 0, 0 |
|
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) |
|
vision_tokens = input_ids[vision_start_indices + 1] |
|
image_nums = (vision_tokens == image_token_id).sum() |
|
video_nums = (vision_tokens == video_token_id).sum() |
|
input_tokens = input_ids.tolist() |
|
llm_pos_ids_list: list = [] |
|
st = 0 |
|
remain_images, remain_videos = image_nums, video_nums |
|
for _ in range(image_nums + video_nums): |
|
if image_token_id in input_tokens and remain_images > 0: |
|
ed_image = input_tokens.index(image_token_id, st) |
|
else: |
|
ed_image = len(input_tokens) + 1 |
|
if video_token_id in input_tokens and remain_videos > 0: |
|
ed_video = input_tokens.index(video_token_id, st) |
|
else: |
|
ed_video = len(input_tokens) + 1 |
|
if ed_image < ed_video: |
|
t, h, w = ( |
|
image_grid_thw[image_index][0], |
|
image_grid_thw[image_index][1], |
|
image_grid_thw[image_index][2], |
|
) |
|
image_index += 1 |
|
remain_images -= 1 |
|
ed = ed_image |
|
else: |
|
t, h, w = ( |
|
video_grid_thw[video_index][0], |
|
video_grid_thw[video_index][1], |
|
video_grid_thw[video_index][2], |
|
) |
|
video_index += 1 |
|
remain_videos -= 1 |
|
ed = ed_video |
|
llm_grid_t, llm_grid_h, llm_grid_w = ( |
|
t.item(), |
|
h.item() // spatial_merge_size, |
|
w.item() // spatial_merge_size, |
|
) |
|
text_len = ed - st |
|
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() |
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() |
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() |
|
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) |
|
st = ed + llm_grid_t * llm_grid_h * llm_grid_w |
|
|
|
if st < len(input_tokens): |
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
text_len = len(input_tokens) - st |
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) |
|
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) |
|
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) |
|
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) |
|
return position_ids, mrope_position_deltas |
|
else: |
|
if attention_mask is not None: |
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) |
|
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] |
|
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] |
|
else: |
|
position_ids = ( |
|
torch.arange(input_ids.shape[1], device=input_ids.device) |
|
.view(1, 1, -1) |
|
.expand(3, input_ids.shape[0], -1) |
|
) |
|
mrope_position_deltas = torch.zeros( |
|
[input_ids.shape[0], 1], |
|
device=input_ids.device, |
|
dtype=input_ids.dtype, |
|
) |
|
|
|
return position_ids, mrope_position_deltas |
|
|
|
def get_video_features( |
|
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None |
|
): |
|
""" |
|
Encodes videos into continuous embeddings that can be forwarded to the language model. |
|
|
|
Args: |
|
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
The tensors corresponding to the input videos. |
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each video in LLM. |
|
""" |
|
pixel_values_videos = pixel_values_videos.type(self.visual.dtype) |
|
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw) |
|
return video_embeds |
|
|
|
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): |
|
""" |
|
Encodes images into continuous embeddings that can be forwarded to the language model. |
|
|
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
The tensors corresponding to the input images. |
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each image in LLM. |
|
""" |
|
pixel_values = pixel_values.type(self.visual.dtype) |
|
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw) |
|
return image_embeds |
|
|
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
rope_deltas: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, LLaVAOneVision1_5_ModelOutputWithPast]: |
|
r""" |
|
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)): |
|
The tensors corresponding to the input videos. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses |
|
[`Qwen2VLImageProcessor`] for processing videos. |
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each image in LLM. |
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each video in LLM. |
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
The rope index difference between sequence length and multimodal rope. |
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
if pixel_values is not None: |
|
image_embeds = self.get_image_features(pixel_values, image_grid_thw) |
|
n_image_tokens = (input_ids == self.config.image_token_id).sum().item() |
|
n_image_features = image_embeds.shape[0] |
|
if not is_torchdynamo_compiling() and n_image_tokens != n_image_features: |
|
raise ValueError( |
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" |
|
) |
|
image_mask = ( |
|
(input_ids == self.config.image_token_id) |
|
.unsqueeze(-1) |
|
.expand_as(inputs_embeds) |
|
.to(inputs_embeds.device) |
|
) |
|
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) |
|
|
|
if pixel_values_videos is not None: |
|
video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw) |
|
n_video_tokens = (input_ids == self.config.video_token_id).sum().item() |
|
n_video_features = video_embeds.shape[0] |
|
if not is_torchdynamo_compiling() and n_video_tokens != n_video_features: |
|
raise ValueError( |
|
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}" |
|
) |
|
video_mask = ( |
|
(input_ids == self.config.video_token_id) |
|
.unsqueeze(-1) |
|
.expand_as(inputs_embeds) |
|
.to(inputs_embeds.device) |
|
) |
|
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(inputs_embeds.device) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
outputs = self.language_model( |
|
input_ids=None, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
cache_position=cache_position, |
|
) |
|
|
|
output = LLaVAOneVision1_5_ModelOutputWithPast( |
|
last_hidden_state=outputs.last_hidden_state, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
rope_deltas=self.rope_deltas, |
|
) |
|
return output if return_dict else output.to_tuple() |
|
|
|
@staticmethod |
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
**kwargs, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape |
|
`(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, |
|
to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
class LLaVAOneVision1_5_ForConditionalGeneration(Qwen2VLPreTrainedModel, GenerationMixin): |
|
_checkpoint_conversion_mapping = { |
|
"^visual": "model.visual", |
|
r"^model(?!\.(language_model|visual))": "model.language_model", |
|
} |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = LLaVAOneVision1_5_Model(config) |
|
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
|
|
@property |
|
def language_model(self): |
|
return self.model.language_model |
|
|
|
@property |
|
def visual(self): |
|
return self.model.visual |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
rope_deltas: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, LLaVAOneVision1_5_CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)): |
|
The tensors corresponding to the input videos. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses |
|
[`Qwen2VLImageProcessor`] for processing videos. |
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each image in LLM. |
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
The temporal, height and width of feature shape of each video in LLM. |
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
The rope index difference between sequence length and multimodal rope. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained("Deep-VLM/LLaVAOV1.5-4b", trust_remote_code=True) |
|
>>> processor = AutoProcessor.from_pretrained("Deep-VLM/LLaVAOV1.5-4b", trust_remote_code=True) |
|
|
|
>>> messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": "What is shown in this image?"}, |
|
], |
|
}, |
|
] |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos]) |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
pixel_values=pixel_values, |
|
pixel_values_videos=pixel_values_videos, |
|
image_grid_thw=image_grid_thw, |
|
video_grid_thw=video_grid_thw, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size) |
|
|
|
return LLaVAOneVision1_5_CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
rope_deltas=outputs.rope_deltas, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
pixel_values=None, |
|
pixel_values_videos=None, |
|
image_grid_thw=None, |
|
video_grid_thw=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
cache_position=cache_position, |
|
position_ids=position_ids, |
|
pixel_values=pixel_values, |
|
pixel_values_videos=pixel_values_videos, |
|
image_grid_thw=image_grid_thw, |
|
video_grid_thw=video_grid_thw, |
|
use_cache=use_cache, |
|
**kwargs, |
|
) |
|
|
|
model_inputs["position_ids"] = None |
|
|
|
if model_inputs["cache_position"][0] != 0: |
|
model_inputs["pixel_values"] = None |
|
model_inputs["pixel_values_videos"] = None |
|
|
|
return model_inputs |
|
|
|
def _get_image_nums_and_video_nums( |
|
self, |
|
input_ids: Optional[torch.LongTensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Get the number of images and videos for each sample to calculate the separation length of the sample tensor. |
|
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. |
|
|
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Returns: |
|
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) |
|
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) |
|
""" |
|
image_token_id = self.config.image_token_id |
|
video_token_id = self.config.video_token_id |
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
|
vision_start_mask = input_ids == vision_start_token_id |
|
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) |
|
image_mask = input_ids == image_token_id |
|
video_mask = input_ids == video_token_id |
|
image_nums = torch.sum(vision_first_mask & image_mask, dim=1) |
|
video_nums = torch.sum(vision_first_mask & video_mask, dim=1) |
|
|
|
return image_nums, video_nums |
|
|
|
def _expand_inputs_for_generation( |
|
self, |
|
expand_size: int = 1, |
|
is_encoder_decoder: bool = False, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
**model_kwargs, |
|
) -> Tuple[torch.LongTensor, Dict[str, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
if expand_size == 1: |
|
return input_ids, model_kwargs |
|
|
|
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"] |
|
|
|
def _expand_dict_for_generation_visual(dict_to_expand): |
|
image_grid_thw = model_kwargs.get("image_grid_thw", None) |
|
video_grid_thw = model_kwargs.get("video_grid_thw", None) |
|
image_nums, video_nums = self._get_image_nums_and_video_nums(input_ids) |
|
|
|
def _repeat_interleave_samples(x, lengths, repeat_times): |
|
samples = torch.split(x, lengths) |
|
repeat_args = [repeat_times] + [1] * (x.dim() - 1) |
|
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) |
|
return result |
|
|
|
for key in dict_to_expand: |
|
if key == "pixel_values": |
|
|
|
samples = torch.split(image_grid_thw, list(image_nums)) |
|
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "image_grid_thw": |
|
|
|
lengths = list(image_nums) |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "pixel_values_videos": |
|
samples = torch.split(video_grid_thw, list(video_nums)) |
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "video_grid_thw": |
|
lengths = list(video_nums) |
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
) |
|
elif key == "second_per_grid_ts": |
|
if not isinstance(dict_to_expand[key], list): |
|
raise TypeError( |
|
f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead." |
|
) |
|
tensor = torch.tensor(dict_to_expand[key]) |
|
lengths = list(video_nums) |
|
tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size) |
|
dict_to_expand[key] = tensor.tolist() |
|
return dict_to_expand |
|
|
|
def _expand_dict_for_generation(dict_to_expand): |
|
for key in dict_to_expand: |
|
if ( |
|
key != "cache_position" |
|
and dict_to_expand[key] is not None |
|
and isinstance(dict_to_expand[key], torch.Tensor) |
|
and key not in visual_keys |
|
): |
|
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) |
|
return dict_to_expand |
|
|
|
|
|
|
|
if input_ids is not None and input_ids.numel() != 0: |
|
model_kwargs = _expand_dict_for_generation_visual(model_kwargs) |
|
|
|
if input_ids is not None: |
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
|
|
model_kwargs = _expand_dict_for_generation(model_kwargs) |
|
|
|
if is_encoder_decoder: |
|
if model_kwargs.get("encoder_outputs") is None: |
|
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") |
|
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) |
|
|
|
return input_ids, model_kwargs |
|
|
|
|
|
__all__ = ["LLaVAOneVision1_5_ForConditionalGeneration", "LLaVAOneVision1_5_Model", "Qwen2VLPreTrainedModel", "LLaVAOneVision1_5_TextModel"] |
|
|
|
|
|
AutoConfig.register("llavaonevision1_5", Llavaonevision1_5Config) |
|
AutoModelForCausalLM.register(Llavaonevision1_5Config, LLaVAOneVision1_5_ForConditionalGeneration) |