Upload configuration_llavaonevision1_5.py with huggingface_hub
Browse files
configuration_llavaonevision1_5.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
|
16 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
class RiceConfig(PretrainedConfig):
|
22 |
+
model_type = "rice_vit"
|
23 |
+
base_config_key = "vision_config"
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
depth=24,
|
28 |
+
embed_dim=1024,
|
29 |
+
hidden_size=1024,
|
30 |
+
hidden_act="gelu",
|
31 |
+
intermediate_size=4096,
|
32 |
+
num_heads=16,
|
33 |
+
in_channels=3,
|
34 |
+
patch_size=14,
|
35 |
+
spatial_merge_size=2,
|
36 |
+
temporal_patch_size=1,
|
37 |
+
initializer_range=0.02,
|
38 |
+
layer_norm_eps=1e-05,
|
39 |
+
text_hidden_size=2560,
|
40 |
+
**kwargs,
|
41 |
+
):
|
42 |
+
super().__init__(**kwargs)
|
43 |
+
|
44 |
+
self.depth = depth
|
45 |
+
self.embed_dim = embed_dim
|
46 |
+
self.hidden_size = hidden_size
|
47 |
+
self.hidden_act = hidden_act
|
48 |
+
self.intermediate_size = intermediate_size
|
49 |
+
self.num_heads = num_heads
|
50 |
+
self.in_channels = in_channels
|
51 |
+
self.patch_size = patch_size
|
52 |
+
self.spatial_merge_size = spatial_merge_size
|
53 |
+
self.temporal_patch_size = temporal_patch_size
|
54 |
+
self.initializer_range = initializer_range
|
55 |
+
self.layer_norm_eps = layer_norm_eps
|
56 |
+
self.text_hidden_size = text_hidden_size
|
57 |
+
|
58 |
+
|
59 |
+
class LLaVAOneVision1_5_TextConfig(PretrainedConfig):
|
60 |
+
r"""
|
61 |
+
Args:
|
62 |
+
vocab_size (`int`, *optional*, defaults to 152064):
|
63 |
+
Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the
|
64 |
+
`inputs_ids` passed when calling [`Qwen2VLModel`]
|
65 |
+
hidden_size (`int`, *optional*, defaults to 8192):
|
66 |
+
Dimension of the hidden representations.
|
67 |
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
68 |
+
Dimension of the MLP representations.
|
69 |
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
70 |
+
Number of hidden layers in the Transformer encoder.
|
71 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
72 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
73 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
74 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
75 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
76 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
77 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
78 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
79 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
80 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
81 |
+
The non-linear activation function (function or string) in the decoder.
|
82 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
83 |
+
The maximum sequence length that this model might ever be used with.
|
84 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
85 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
86 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
87 |
+
The epsilon used by the rms normalization layers.
|
88 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
90 |
+
relevant if `config.is_decoder=True`.
|
91 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether the model's input and output word embeddings should be tied.
|
93 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
94 |
+
The base period of the RoPE embeddings.
|
95 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
96 |
+
Whether to use sliding window attention.
|
97 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
98 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
99 |
+
max_window_layers (`int`, *optional*, defaults to 80):
|
100 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
101 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
102 |
+
The dropout ratio for the attention probabilities.
|
103 |
+
rope_scaling (`Dict`, *optional*):
|
104 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
105 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
106 |
+
accordingly.
|
107 |
+
Expected contents:
|
108 |
+
`rope_type` (`str`):
|
109 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
110 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
111 |
+
`factor` (`float`, *optional*):
|
112 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
113 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
114 |
+
original maximum pre-trained length.
|
115 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
116 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
117 |
+
pretraining.
|
118 |
+
`attention_factor` (`float`, *optional*):
|
119 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
120 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
121 |
+
`factor` field to infer the suggested value.
|
122 |
+
`beta_fast` (`float`, *optional*):
|
123 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
124 |
+
ramp function. If unspecified, it defaults to 32.
|
125 |
+
`beta_slow` (`float`, *optional*):
|
126 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
127 |
+
ramp function. If unspecified, it defaults to 1.
|
128 |
+
`short_factor` (`List[float]`, *optional*):
|
129 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
130 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
131 |
+
size divided by the number of attention heads divided by 2
|
132 |
+
`long_factor` (`List[float]`, *optional*):
|
133 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
134 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
135 |
+
size divided by the number of attention heads divided by 2
|
136 |
+
`low_freq_factor` (`float`, *optional*):
|
137 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
138 |
+
`high_freq_factor` (`float`, *optional*):
|
139 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
140 |
+
image_token_id (`int`, *optional*):
|
141 |
+
Token index used as placeholder for image embeddings.
|
142 |
+
video_token_id (`int`, *optional*):
|
143 |
+
Token index used as placeholder for video embeddings.
|
144 |
+
|
145 |
+
"""
|
146 |
+
|
147 |
+
model_type = "LLaVAOneVision1_5_text"
|
148 |
+
base_config_key = "text_config"
|
149 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
150 |
+
# Default tensor parallel plan for base model `Qwen2VL`
|
151 |
+
base_model_tp_plan = {
|
152 |
+
"layers.*.self_attn.q_proj": "colwise",
|
153 |
+
"layers.*.self_attn.k_proj": "colwise",
|
154 |
+
"layers.*.self_attn.v_proj": "colwise",
|
155 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
156 |
+
"layers.*.mlp.gate_proj": "colwise",
|
157 |
+
"layers.*.mlp.up_proj": "colwise",
|
158 |
+
"layers.*.mlp.down_proj": "rowwise",
|
159 |
+
}
|
160 |
+
base_model_pp_plan = {
|
161 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
162 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
163 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
164 |
+
}
|
165 |
+
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
vocab_size=151936,
|
169 |
+
hidden_size=4096,
|
170 |
+
intermediate_size=12288,
|
171 |
+
num_hidden_layers=36,
|
172 |
+
num_attention_heads=32,
|
173 |
+
num_key_value_heads=8,
|
174 |
+
head_dim=128,
|
175 |
+
hidden_act="silu",
|
176 |
+
max_position_embeddings=32768,
|
177 |
+
initializer_range=0.02,
|
178 |
+
rms_norm_eps=1e-06,
|
179 |
+
use_cache=True,
|
180 |
+
tie_word_embeddings=False,
|
181 |
+
rope_theta=1000000.0,
|
182 |
+
attention_bias=False,
|
183 |
+
use_sliding_window=False,
|
184 |
+
sliding_window=None,
|
185 |
+
max_window_layers=36,
|
186 |
+
attention_dropout=0.0,
|
187 |
+
rope_scaling=None,
|
188 |
+
layer_types=None,
|
189 |
+
image_token_id=None,
|
190 |
+
video_token_id=None,
|
191 |
+
**kwargs,
|
192 |
+
):
|
193 |
+
self.vocab_size = vocab_size
|
194 |
+
self.max_position_embeddings = max_position_embeddings
|
195 |
+
self.hidden_size = hidden_size
|
196 |
+
self.intermediate_size = intermediate_size
|
197 |
+
self.num_hidden_layers = num_hidden_layers
|
198 |
+
self.num_attention_heads = num_attention_heads
|
199 |
+
self.use_sliding_window = use_sliding_window
|
200 |
+
self.sliding_window = sliding_window
|
201 |
+
self.max_window_layers = max_window_layers
|
202 |
+
|
203 |
+
# for backward compatibility
|
204 |
+
if num_key_value_heads is None:
|
205 |
+
num_key_value_heads = num_attention_heads
|
206 |
+
|
207 |
+
self.num_key_value_heads = num_key_value_heads
|
208 |
+
self.head_dim = head_dim
|
209 |
+
self.hidden_act = hidden_act
|
210 |
+
self.initializer_range = initializer_range
|
211 |
+
self.rms_norm_eps = rms_norm_eps
|
212 |
+
self.use_cache = use_cache
|
213 |
+
self.rope_theta = rope_theta
|
214 |
+
self.attention_dropout = attention_dropout
|
215 |
+
self.rope_scaling = rope_scaling
|
216 |
+
self.attention_bias = attention_bias
|
217 |
+
self.tie_word_embeddings = tie_word_embeddings
|
218 |
+
|
219 |
+
# Validate the correctness of rotary position embeddings parameters
|
220 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
221 |
+
# and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations
|
222 |
+
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
223 |
+
# TODO: @raushan update config in the hub
|
224 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
225 |
+
if self.rope_scaling["type"] == "mrope":
|
226 |
+
self.rope_scaling["type"] = "default"
|
227 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
228 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
229 |
+
self.image_token_id = image_token_id
|
230 |
+
self.video_token_id = video_token_id
|
231 |
+
|
232 |
+
self.layer_types = layer_types
|
233 |
+
if self.layer_types is None:
|
234 |
+
self.layer_types = [
|
235 |
+
"sliding_attention"
|
236 |
+
if self.sliding_window is not None and i >= self.max_window_layers
|
237 |
+
else "full_attention"
|
238 |
+
for i in range(self.num_hidden_layers)
|
239 |
+
]
|
240 |
+
layer_type_validation(self.layer_types)
|
241 |
+
|
242 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
243 |
+
|
244 |
+
|
245 |
+
class Llavaonevision1_5Config(PretrainedConfig):
|
246 |
+
r"""
|
247 |
+
Args:
|
248 |
+
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_TextConfig`):
|
249 |
+
The config object or dictionary of the text backbone.
|
250 |
+
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_VisionConfig`):
|
251 |
+
The config object or dictionary of the vision backbone.
|
252 |
+
image_token_id (`int`, *optional*, defaults to 151655):
|
253 |
+
The image token index to encode the image prompt.
|
254 |
+
video_token_id (`int`, *optional*, defaults to 151656):
|
255 |
+
The video token index to encode the image prompt.
|
256 |
+
"""
|
257 |
+
|
258 |
+
model_type = "llavaonevision1_5"
|
259 |
+
sub_configs = {"vision_config": RiceConfig, "text_config": LLaVAOneVision1_5_TextConfig}
|
260 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
261 |
+
|
262 |
+
def __init__(
|
263 |
+
self,
|
264 |
+
text_config=None,
|
265 |
+
vision_config=None,
|
266 |
+
image_token_id=151655,
|
267 |
+
video_token_id=151656,
|
268 |
+
vocab_size=152064,
|
269 |
+
**kwargs,
|
270 |
+
):
|
271 |
+
if isinstance(vision_config, dict):
|
272 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
273 |
+
elif vision_config is None:
|
274 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
275 |
+
|
276 |
+
if isinstance(text_config, dict):
|
277 |
+
self.text_config = self.sub_configs["text_config"](**text_config)
|
278 |
+
elif text_config is None:
|
279 |
+
# For BC use all kwargs to init `TextConfig`
|
280 |
+
self.text_config = self.sub_configs["text_config"](**kwargs)
|
281 |
+
|
282 |
+
self.image_token_id = image_token_id
|
283 |
+
self.video_token_id = video_token_id
|
284 |
+
self.vocab_size = vocab_size
|
285 |
+
|
286 |
+
super().__init__(**kwargs)
|
287 |
+
|
288 |
+
__all__ = ["Llavaonevision1_5Config", "LLaVAOneVision1_5_TextConfig"]
|