Upload inference.py with huggingface_hub
Browse files- inference.py +2 -8
inference.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
|
2 |
from qwen_vl_utils import process_vision_info
|
3 |
-
model_path = "/
|
4 |
|
5 |
# default: Load the model on the available device(s)
|
6 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -10,19 +10,13 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
10 |
# default processer
|
11 |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
12 |
|
13 |
-
# The default range for the number of visual tokens per image in the model is 4-16384.
|
14 |
-
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
|
15 |
-
# min_pixels = 256*28*28
|
16 |
-
# max_pixels = 1280*28*28
|
17 |
-
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
18 |
-
|
19 |
messages = [
|
20 |
{
|
21 |
"role": "user",
|
22 |
"content": [
|
23 |
{
|
24 |
"type": "image",
|
25 |
-
"image": "/
|
26 |
},
|
27 |
{"type": "text", "text": "Describe this image."},
|
28 |
],
|
|
|
1 |
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
|
2 |
from qwen_vl_utils import process_vision_info
|
3 |
+
model_path = "lmms-lab/LLaVA-One-Vision-1.5-8B-Instruct"
|
4 |
|
5 |
# default: Load the model on the available device(s)
|
6 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
10 |
# default processer
|
11 |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
messages = [
|
14 |
{
|
15 |
"role": "user",
|
16 |
"content": [
|
17 |
{
|
18 |
"type": "image",
|
19 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
20 |
},
|
21 |
{"type": "text", "text": "Describe this image."},
|
22 |
],
|