Image-Text-to-Text
Transformers
Safetensors
feature-extraction
conversational
custom_code
Yin-Xie commited on
Commit
9570a60
·
verified ·
1 Parent(s): 5b8e6bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +160 -3
README.md CHANGED
@@ -1,3 +1,160 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - lmms-lab/LLaVA-One-Vision-1.5-Insturct-26M
5
+ - lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M
6
+ base_model:
7
+ - Qwen/Qwen3-8B-Base
8
+ - DeepGlint-AI/rice-vit-large-patch14-560
9
+ ---
10
+ # LLaVA-OneVision-1.5: Fully Open-Source State-of-the-Art VLM Model
11
+
12
+ # ✨ Key Features
13
+
14
+ **LLaVA-OneVision-1.5** introduces a novel family of **fully open-source** Large Multimodal Models (LMMs) that achieves **state-of-the-art performance** with substantially **lower cost** through training on **native resolution** images.
15
+
16
+ 1. **Superior Performance**
17
+ A family of fully open-source large multimodal models demonstrating **superior performance** across multiple multimodal benchmarks, **outperforming Qwen2.5-VL** in most evaluation tasks.
18
+
19
+ 2. **High-Quality Data at Scale**
20
+ Meticulously curated **pre-training and SFT data** with rigorous filtering and quality control, achieving **superior data efficiency** with only **5B tokens** (1.2% of Qwen2.5-VL's training data).
21
+ - Concept-balanced, highly diverse, high-quality caption data
22
+ - Comprehensive instruction fine-tuning data covering a wide range of tasks
23
+
24
+ 3. **Ultra-Efficient Training Framework**
25
+ Complete end-to-end training framework designed for maximum efficiency:
26
+ - **$16K total budget** for full model training
27
+ - **45% HFU efficiency** on A100 GPUs ($0.6 per GPU/Hour)
28
+ - Built on **MegatronLM** with support for **MoE**, **FP8**, and **long sequence parallelization**
29
+ - Optimized codebase for cost-effective scaling
30
+
31
+ 4. **Fully Open Framework** for community access and reproducibility:
32
+ - ✅ High-quality pre-training & SFT data
33
+ - ✅ Complete training framework & code
34
+ - ✅ Training recipes & configurations
35
+ - ✅ Base & instruct model checkpoints
36
+ - ✅ Comprehensive training logs & metrics
37
+
38
+ ## Dataset
39
+ | Description | Link |
40
+ |-------------|------|
41
+ | Pretrain data for LLaVA-OneVision-1.5 | [🤗 Download (Uploading!)](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M) |
42
+ | SFT data for LLaVA-OneVision-1.5 | [🤗 Download (Uploading!)](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Insturct-26M) |
43
+
44
+ ## Evaluation Results
45
+ All evaluations were conducted using lmms_eval.
46
+
47
+ | | **LLaVA-OV-1.5-8B** | **Qwen2.5 VL 7B** | **LLaVA-OV-1.5-4B** | **Qwen2.5 VL 3B** |
48
+ |:----------------------------------|:---------------:|:-------------:|:---------------:|:-------------:|
49
+ | MMMU (Validation) | **55.44** | 51.33 | **51.44** | 46.44 |
50
+ | MMMU-Pro (Standard) | **37.40** | 36.30 | **33.24** | 31.10 |
51
+ | MMMU-Pro (Vision) | 25.15 | **32.83** | **23.53** | 21.27 |
52
+ | MMBench (English; Test) | **84.14** | 83.40 | **82.29** | 77.97 |
53
+ | MMBench (Chinese; Test) | 81.00 | **81.61** | **76.73** | 74.55 |
54
+ | MME-RealWorld (English) | **62.31** | 57.33 | **57.16** | 51.60 |
55
+ | MME-RealWorld (Chinese) | **56.11** | 51.50 | 21.38 | **45.38** |
56
+ | AI2D (With Mask) | **84.16** | 82.58 | **84.62** | 78.56 |
57
+ | AI2D (Without Mask) | **94.11** | 93.36 | **92.84** | 90.74 |
58
+ | CV-Bench | **80.82** | 79.95 | **74.00** | 71.53 |
59
+ | VL-RewardBench | 45.90 | **49.65** | **45.90** | 42.06 |
60
+ | V* | **78.01** | 76.96 | 66.49 | **69.63** |
61
+ | PixmoCount | 62.19 | **63.33** | **59.17** | 50.85 |
62
+ | CountBench | **88.19** | 86.35 | **77.80** | 72.51 |
63
+ | ChartQA | **86.48** | 84.08 | **85.11** | 83.36 |
64
+ | CharXiv (Direct Questions) | **74.10** | 69.80 | **70.70** | 58.20 |
65
+ | DocVQA (Test) | **95.00** | 94.93 | **93.48** | 92.67 |
66
+ | InfoVQA (Test) | 78.42 | **81.67** | **75.27** | 75.63 |
67
+ | WeMath | **33.62** | 33.33 | **28.00** | 18.38 |
68
+ | MathVista (Mini) | **69.57** | 68.60 | **67.36** | 60.23 |
69
+ | MathVision | **25.56** | 22.37 | **22.76** | 21.25 |
70
+ | MMStar | **67.72** | 62.54 | **64.22** | 55.86 |
71
+ | SEED-Bench (Image) | 77.32 | **77.53** | **76.74** | 74.81 |
72
+ | ScienceQA | **94.98** | 88.75 | **92.05** | 83.33 |
73
+ | SEED-Bench 2-Plus | 69.21 | **70.93** | **68.42** | 68.64 |
74
+ | OCRBench | 82.90 | **84.20** | 77.80 | **79.20** |
75
+ | RealWorldQA | 68.10 | **68.50** | **64.05** | 60.00 |
76
+
77
+ ### Using 🤗 Transformers to Chat
78
+
79
+ Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
80
+
81
+ ```python
82
+ from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
83
+ from qwen_vl_utils import process_vision_info
84
+ model_path = "Deep-VLM/LLaVA-One-Vision-1.5-4B-instruct"
85
+
86
+ # default: Load the model on the available device(s)
87
+ model = AutoModelForCausalLM.from_pretrained(
88
+ model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
89
+ )
90
+
91
+ # default processer
92
+ processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
93
+
94
+ messages = [
95
+ {
96
+ "role": "user",
97
+ "content": [
98
+ {
99
+ "type": "image",
100
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
101
+ },
102
+ {"type": "text", "text": "Describe this image."},
103
+ ],
104
+ }
105
+ ]
106
+
107
+ # Preparation for inference
108
+ text = processor.apply_chat_template(
109
+ messages, tokenize=False, add_generation_prompt=True
110
+ )
111
+ image_inputs, video_inputs = process_vision_info(messages)
112
+ inputs = processor(
113
+ text=[text],
114
+ images=image_inputs,
115
+ videos=video_inputs,
116
+ padding=True,
117
+ return_tensors="pt",
118
+ )
119
+ inputs = inputs.to("cuda")
120
+
121
+ # Inference: Generation of the output
122
+ generated_ids = model.generate(**inputs, max_new_tokens=1024)
123
+ generated_ids_trimmed = [
124
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
125
+ ]
126
+ output_text = processor.batch_decode(
127
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
128
+ )
129
+ print(output_text)
130
+ ```
131
+
132
+ ## Citation
133
+
134
+ If you find *LLaVA-OneVision-1.5* useful in your research, please consider to cite the following related papers:
135
+
136
+ ```
137
+ @inproceedings{LLaVA-OneVision-1.5,
138
+ title={LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training},
139
+ author={},
140
+ booktitle={arxiv},
141
+ year={2025}
142
+ }
143
+
144
+ @inproceedings{xie2025region,
145
+ title={Region-based Cluster Discrimination for Visual Representation Learning},
146
+ author={Xie, Yin and Yang, Kaicheng and An, Xiang and Wu, Kun and Zhao, Yongle and Deng, Weimo and Ran, Zimin and Wang, Yumeng and Feng, Ziyong and Miles, Roy and Elezi, Ismail and Deng, Jiankang},
147
+ booktitle={ICCV},
148
+ year={2025}
149
+ }
150
+
151
+ @article{lillava,
152
+ title={LLaVA-OneVision: Easy Visual Task Transfer},
153
+ author={Li, Bo and Zhang, Yuanhan and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Hao and Zhang, Kaichen and Zhang, Peiyuan and Li, Yanwei and Liu, Ziwei and Li, Chunyuan},
154
+ journal={Transactions on Machine Learning Research}
155
+ year={2024}
156
+ }
157
+ ```
158
+
159
+
160
+