from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM from qwen_vl_utils import process_vision_info model_path = "lmms-lab/LLaVA-One-Vision-1.5-8B-Instruct" # default: Load the model on the available device(s) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True ) # default processer processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text)