loghugging25 commited on
Commit
7c17d0b
·
verified ·
1 Parent(s): 856f5bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -129,11 +129,11 @@ eval_steps: 500 # adjust this if needed (e.g., if you use "steps", it dete
129
  We follow the instructions provided in the [LLaMA-Factory Quickstart Guide](https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#quickstart):
130
 
131
  ```
132
- llamafactory-cli train logicsct_train_Phi4_qlora_sft_otfq.yaml # VRAM used: 11093MiB for 4 bit QLoRA training
133
- llamafactory-cli chat logicsct_inference_Phi4_qlora_sft_otfq.yaml # VRAM used: 30927MiB for inference of base model + QLoRA adapter
134
- llamafactory-cli export logicsct_export_Phi4_qlora_sft.yaml # VRAM used: 665MiB + about 29 GB of system RAM for exporting a merged verison of the model with its adapter
135
- llamafactory-cli export logicsct_export_Phi4_qlora_sft_Q4.yaml # VRAM used: 38277MiB for a 4bit quant export of the merged model
136
- llamafactory-cli chat logicsct_inference_Phi4_qlora_sft_otfq_Q4.yaml # VRAM used: 9255MiB-11405MiB VRAM for inference of the 4bit quant merged model (increasing with increasing context length)
137
  ```
138
 
139
  ### Comparison of Open Source Training/Models with OpenAI Proprietary Fine-Tuning
 
129
  We follow the instructions provided in the [LLaMA-Factory Quickstart Guide](https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#quickstart):
130
 
131
  ```
132
+ llamafactory-cli train logicsct_train_Phi4_qlora_sft_otfq.yaml # VRAM used: 11093MiB for 4 bit QLoRA training
133
+ llamafactory-cli chat logicsct_inference_Phi4_qlora_sft_otfq.yaml # VRAM used: 30927MiB for inference of base model + QLoRA adapter
134
+ llamafactory-cli export logicsct_export_Phi4_qlora_sft.yaml # VRAM used: 665MiB + about 29 GB of system RAM for exporting a merged verison of the model with its adapter
135
+ llamafactory-cli export logicsct_export_Phi4_qlora_sft_Q4.yaml # VRAM used: 38277MiB for a 4bit quant export of the merged model
136
+ llamafactory-cli chat logicsct_inference_Phi4_qlora_sft_otfq_Q4.yaml # VRAM used: 9255MiB-11405MiB VRAM for inference of the 4bit quant merged model (increasing with increasing context length)
137
  ```
138
 
139
  ### Comparison of Open Source Training/Models with OpenAI Proprietary Fine-Tuning