--- base_model: - Qwen/Qwen2.5-Coder-7B-Instruct datasets: - luzimu/WebGen-Bench language: - en library_name: transformers license: mit metrics: - accuracy pipeline_tag: text-generation tags: - code-generation --- # WebGen-LM WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (🤗 [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733). The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench). The WebGen-LM family of models are as follows: |Models | HF Links | |---|---| |WebGen-LM-7B | 🤗 [luzimu/WebGen-LM-7B](https://huggingface.co/luzimu/WebGen-LM-7B) | |WebGen-LM-14B | 🤗 [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) | |WebGen-LM-32B | 🤗 [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) | ## Performance on WebGen-Bench ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b0bfef2f2f9c345b87e673/ADt1JdvKw-IZ_xnS17adL.png) ## Sample Usage You can use this model with the Hugging Face `transformers` library. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "luzimu/WebGen-LM-7B" # This model card refers to WebGen-LM-7B tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") # Example for website generation user_prompt = "Generate a simple HTML page with a heading 'Hello, World!' and a paragraph of lorem ipsum text." messages = [ {"role": "user", "content": user_prompt} ] # Apply chat template for instruction-following format text_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Generate output model_inputs = tokenizer(text_input, return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=500, do_sample=True, temperature=0.01, top_k=50, top_p=0.95) # Decode and print the generated code generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) print(generated_text) # Example using Hugging Face pipeline for simpler inference generator = pipeline("text-generation", model=model, tokenizer=tokenizer) result = generator(user_prompt, max_new_tokens=500, do_sample=True, temperature=0.01, top_k=50, top_p=0.95) print(result[0]['generated_text']) ``` ## Citation If you find our project useful, please cite: ``` @misc{lu2025webgenbenchevaluatingllmsgenerating, title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch}, author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li}, year={2025}, eprint={2505.03733}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.03733}, } ```