End of training
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
license: bsd-3-clause
|
4 |
-
base_model: MIT/ast-finetuned-
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
@@ -11,7 +11,7 @@ metrics:
|
|
11 |
- recall
|
12 |
- f1
|
13 |
model-index:
|
14 |
-
- name: ast-
|
15 |
results:
|
16 |
- task:
|
17 |
name: Audio Classification
|
@@ -25,79 +25,68 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
---
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
- **Model name:** `ast-mlcommons-speech-commands`
|
41 |
-
- **Architecture:** Audio Spectrogram Transformer (AST)
|
42 |
-
- **Base pre-trained checkpoint:** MIT AST fine-tuned on Google Speech Commands v0.02
|
43 |
-
- **Fine-tuning dataset:** Custom dataset drawn from MLCommons Multilingual Spoken Words corpus, augmented with `_silence_` and `_unknown_` categories sampled from Google Speech Commands v0.02
|
44 |
-
- **License:** bsd-3-clause
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
47 |
|
48 |
-
|
49 |
-
- **Input:** 16 kHz mono audio, 1-second clips (or padded/truncated to 1 sec), converted to log-mel spectrograms with 128 mel bins and 10 ms hop length
|
50 |
-
- **Output:** Softmax over 80 classes (indices 0–79). Classes mapping:
|
51 |
-
```json
|
52 |
-
{
|
53 |
-
"0": "_silence_",
|
54 |
-
"1": "_unknown_",
|
55 |
-
"2": "air",
|
56 |
-
// ... 3–9 omitted for brevity ...
|
57 |
-
"9": "cake",
|
58 |
-
"10": "car",
|
59 |
-
// ... up to 79: "zoo"
|
60 |
-
}
|
61 |
|
62 |
-
##
|
63 |
|
64 |
-
|
65 |
-
* **Sources:**
|
66 |
|
67 |
-
|
68 |
-
* Google Speech Commands v0.02 for silence and unknown categories
|
69 |
-
* **Preprocessing:**
|
70 |
|
71 |
-
|
72 |
-
* Fixed-length one-second windows with zero-padding or cropping
|
73 |
|
74 |
-
##
|
75 |
|
76 |
-
|
77 |
-
| --------- | ------ |
|
78 |
-
| Loss | 0.0685 |
|
79 |
-
| Precision | 0.9862 |
|
80 |
-
| Recall | 0.9862 |
|
81 |
-
| F1-score | 0.9861 |
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
* May misclassify under unseen noise conditions or heavy accents
|
92 |
-
* `_unknown_` class may not cover all out-of-vocabulary words; false positives possible
|
93 |
-
* Performance may degrade on dialects or languages underrepresented in training
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
booktitle={ICASSP},
|
102 |
-
year={2022}
|
103 |
-
}
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
license: bsd-3-clause
|
4 |
+
base_model: MIT/ast-finetuned-audioset-12-12-0.447
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
|
|
11 |
- recall
|
12 |
- f1
|
13 |
model-index:
|
14 |
+
- name: ast-mlcommons-speech-commands
|
15 |
results:
|
16 |
- task:
|
17 |
name: Audio Classification
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9661601051155746
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9662664379645511
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9661541075893276
|
35 |
---
|
36 |
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
|
40 |
+
# ast-mlcommons-speech-commands
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-12-12-0.447](https://huggingface.co/MIT/ast-finetuned-audioset-12-12-0.447) on the audiofolder dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.1790
|
45 |
+
- Precision: 0.9662
|
46 |
+
- Recall: 0.9663
|
47 |
+
- F1: 0.9662
|
48 |
|
49 |
+
## Model description
|
50 |
|
51 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
## Intended uses & limitations
|
54 |
|
55 |
+
More information needed
|
|
|
56 |
|
57 |
+
## Training and evaluation data
|
|
|
|
|
58 |
|
59 |
+
More information needed
|
|
|
60 |
|
61 |
+
## Training procedure
|
62 |
|
63 |
+
### Training hyperparameters
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 5e-05
|
67 |
+
- train_batch_size: 32
|
68 |
+
- eval_batch_size: 32
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- lr_scheduler_warmup_ratio: 0.1
|
73 |
+
- num_epochs: 5
|
74 |
+
- mixed_precision_training: Native AMP
|
75 |
|
76 |
+
### Training results
|
77 |
|
78 |
+
| Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall |
|
79 |
+
|:-------------:|:-----:|:-----:|:------:|:---------------:|:---------:|:------:|
|
80 |
+
| 0.0795 | 1.0 | 3496 | 0.9342 | 0.2169 | 0.9357 | 0.9347 |
|
81 |
+
| 0.1295 | 2.0 | 6992 | 0.9467 | 0.1728 | 0.9486 | 0.9473 |
|
82 |
+
| 0.0279 | 3.0 | 10488 | 0.9551 | 0.1717 | 0.9558 | 0.9556 |
|
83 |
+
| 0.0029 | 4.0 | 13984 | 0.9621 | 0.1733 | 0.9624 | 0.9621 |
|
84 |
+
| 0.0023 | 5.0 | 17480 | 0.1790 | 0.9662 | 0.9663 | 0.9662 |
|
85 |
|
|
|
|
|
|
|
86 |
|
87 |
+
### Framework versions
|
88 |
|
89 |
+
- Transformers 4.51.3
|
90 |
+
- Pytorch 2.7.0+cu128
|
91 |
+
- Datasets 3.6.0
|
92 |
+
- Tokenizers 0.21.1
|
|
|
|
|
|