--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-12-12-0.447 tags: - generated_from_trainer datasets: - audiofolder metrics: - precision - recall - f1 model-index: - name: ast-mlcommons-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Precision type: precision value: 0.9661601051155746 - name: Recall type: recall value: 0.9662664379645511 - name: F1 type: f1 value: 0.9661541075893276 --- # ast-mlcommons-speech-commands This model is a fine-tuned version of [MIT/ast-finetuned-audioset-12-12-0.447](https://huggingface.co/MIT/ast-finetuned-audioset-12-12-0.447) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1790 - Precision: 0.9662 - Recall: 0.9663 - F1: 0.9662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:-----:|:------:|:---------------:|:---------:|:------:| | 0.0795 | 1.0 | 3496 | 0.9342 | 0.2169 | 0.9357 | 0.9347 | | 0.1295 | 2.0 | 6992 | 0.9467 | 0.1728 | 0.9486 | 0.9473 | | 0.0279 | 3.0 | 10488 | 0.9551 | 0.1717 | 0.9558 | 0.9556 | | 0.0029 | 4.0 | 13984 | 0.9621 | 0.1733 | 0.9624 | 0.9621 | | 0.0023 | 5.0 | 17480 | 0.9662 | 0.1790 | 0.9663 | 0.9662 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1