from transformers import AutoTokenizer | |
from optimum.onnxruntime import ORTModelForFeatureExtraction | |
from sentence_transformers import models | |
import numpy as np | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("./embeddinggemma-300m") | |
model = ORTModelForFeatureExtraction.from_pretrained("./embeddinggemma-300m") | |
inputs = tokenizer("apple", return_tensors="pt") | |
print(inputs) | |
input_ids = inputs['input_ids'] | |
sequence_length = input_ids.shape[1] | |
position_ids = np.arange(sequence_length)[None, :] | |
position_ids = np.tile(position_ids, (input_ids.shape[0], 1)) | |
inputs['position_ids'] = torch.tensor(position_ids, dtype=torch.long) | |
outputs = model(**inputs) | |
last_hidden = outputs.last_hidden_state | |
attention_mask = inputs['attention_mask'] | |
# Use SentenceTransformer's Pooling module for mean pooling | |
pooling = models.Pooling(word_embedding_dimension=last_hidden.shape[-1], pooling_mode_mean_tokens=True) | |
features = {'token_embeddings': last_hidden, 'attention_mask': attention_mask} | |
pooled = pooling(features)['sentence_embedding'] | |
print("Mean pooled:", pooled[0][:5].detach().cpu().numpy()) |