from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForFeatureExtraction from sentence_transformers import models import numpy as np import torch tokenizer = AutoTokenizer.from_pretrained("./embeddinggemma-300m") model = ORTModelForFeatureExtraction.from_pretrained("./embeddinggemma-300m") inputs = tokenizer("apple", return_tensors="pt") print(inputs) input_ids = inputs['input_ids'] sequence_length = input_ids.shape[1] position_ids = np.arange(sequence_length)[None, :] position_ids = np.tile(position_ids, (input_ids.shape[0], 1)) inputs['position_ids'] = torch.tensor(position_ids, dtype=torch.long) outputs = model(**inputs) last_hidden = outputs.last_hidden_state attention_mask = inputs['attention_mask'] # Use SentenceTransformer's Pooling module for mean pooling pooling = models.Pooling(word_embedding_dimension=last_hidden.shape[-1], pooling_mode_mean_tokens=True) features = {'token_embeddings': last_hidden, 'attention_mask': attention_mask} pooled = pooling(features)['sentence_embedding'] print("Mean pooled:", pooled[0][:5].detach().cpu().numpy())