mbley commited on
Commit
80dbde5
·
verified ·
1 Parent(s): a94e45c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -24
README.md CHANGED
@@ -6,46 +6,63 @@ tags:
6
  - generated_from_setfit_trainer
7
  widget:
8
  - text: 03771 290230 oder 03771 2534030
9
- - text: Seit Jahresbeginn konnten wieder etliche Praxisbeispiele aus den hessischen
10
- Regionen für die OloV - Website aufbereitet oder mit aktuellen Entwicklungen ergänzt
11
- werden.
 
12
  - text: 在 Greding 出 口 离 开 A9 高 速 公 路 。
13
  - text: 'Vortrag : SIMCP WORKSHOP, online ( eingeladen ) ; 16. 11.'
14
- - text: Nicht nur bei Fragen zur von Smart CROSSBLADE Dachboxen hilft unser neu gestalteter
15
- weiter.
16
- metrics:
17
- - accuracy
18
  pipeline_tag: text-classification
19
  library_name: setfit
20
  inference: false
 
 
 
 
 
 
 
21
  ---
22
 
23
- # SetFit
24
 
25
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
 
26
 
27
- The model has been trained using an efficient few-shot learning technique that involves:
28
 
29
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
30
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
31
 
32
- ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ### Model Description
35
  - **Model Type:** SetFit
36
  <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
37
  - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
38
  - **Maximum Sequence Length:** 512 tokens
39
- <!-- - **Number of Classes:** Unknown -->
40
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
41
- <!-- - **Language:** Unknown -->
42
- <!-- - **License:** Unknown -->
43
 
44
  ### Model Sources
45
 
46
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
47
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
48
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
49
 
50
  ## Uses
51
 
@@ -94,10 +111,6 @@ preds = model("在 Greding 出 口 离 开 A9 高 速 公 路 。")
94
 
95
  ## Training Details
96
 
97
- ### Training Set Metrics
98
- | Training set | Min | Median | Max |
99
- |:-------------|:----|:--------|:----|
100
- | Word count | 1 | 20.4578 | 319 |
101
 
102
  ### Training Hyperparameters
103
  - batch_size: (8, 8)
 
6
  - generated_from_setfit_trainer
7
  widget:
8
  - text: 03771 290230 oder 03771 2534030
9
+ - text: >-
10
+ Seit Jahresbeginn konnten wieder etliche Praxisbeispiele aus den hessischen
11
+ Regionen für die OloV - Website aufbereitet oder mit aktuellen Entwicklungen
12
+ ergänzt werden.
13
  - text: 在 Greding 出 口 离 开 A9 高 速 公 路 。
14
  - text: 'Vortrag : SIMCP WORKSHOP, online ( eingeladen ) ; 16. 11.'
15
+ - text: >-
16
+ Nicht nur bei Fragen zur von Smart CROSSBLADE Dachboxen hilft unser neu
17
+ gestalteter weiter.
 
18
  pipeline_tag: text-classification
19
  library_name: setfit
20
  inference: false
21
+ license: mit
22
+ datasets:
23
+ - mbley/german-webtext-quality-classification-dataset
24
+ language:
25
+ - de
26
+ base_model:
27
+ - distilbert/distilbert-base-multilingual-cased
28
  ---
29
 
30
+ # Bootstrapping a Sentence-Level Corpus Quality Classifier for Web Text using Active Learning (RANLP25)
31
 
32
+ A multi-label sentence classifier trained with Active Learning for predicting high- or low-qality labels of german webtext.
33
+ Training and evaluation code: <https://github.com/maximilian-bley/german-webtext-quality-classification>
34
 
35
+ ## Model Details
36
 
37
+ - **Labels**
 
38
 
39
+ - **0=Sentence Boundary:** Sentence boundary errors occur if the start or ending of a sentence is malformed. This is the case if it begins with a lower case letter or an atypical character, or lacks a proper terminal punctuation mark (e.g., period, exclamation mark, or question mark).
40
+
41
+ - **1=Grammar Mistake:** Grammar mistakes are any grammatical errors such as incorrect articles, cases, word order and incorrect use or absence of words. Moreover, random-looking sequences of words, usually series of nouns, should be tagged. In most cases where this label is applicable, the sentence' comprehensibility or message is impaired.
42
+
43
+ - **2=Spelling Anomaly:** A spelling anomaly is tagged when a word does not correspond to German spelling. This includes typos and incorrect capitalization (e.g. “all caps” or lower-case nouns). Spelling anomalies are irregularities that occur within the word boundary, meaning here text between two whitespaces. In particular, individual letters or nonsensical word fragments are also tagged.
44
+
45
+ - **3=Punctuation Error:** Punctuation errors are tagged if a punctuation symbol has been placed incorrectly or is missing in the intended place. This includes comma errors, missing quotation marks or parentheses, periods instead of question marks or incorrect or missing dashes or hyphens.
46
+
47
+ - **4=Non-linguistic Content:** Non-linguistic content includes all types of encoding errors, language-atypical occurrences of numbers and characters (e.g. random sequences of characters or letters), code (remnants), URLs, hashtags and emoticons.
48
+
49
+ - **5=Letter Spacing:** Letter spacings are deliberately inserted spaces between the characters of a word.
50
+
51
+ - **6=Clean:** Assigned if none of the other labels apply.
52
 
53
  ### Model Description
54
  - **Model Type:** SetFit
55
  <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
56
  - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
57
  - **Maximum Sequence Length:** 512 tokens
58
+ **Number of Classes:** 6
59
+ **Language:** German
60
+
 
61
 
62
  ### Model Sources
63
 
64
+ - **Repository:**
65
+ - **Paper:**
 
66
 
67
  ## Uses
68
 
 
111
 
112
  ## Training Details
113
 
 
 
 
 
114
 
115
  ### Training Hyperparameters
116
  - batch_size: (8, 8)