File size: 4,334 Bytes
a3cbeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe0c9e
 
 
 
 
 
 
 
 
 
 
 
a3cbeac
4b9d242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3cbeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- generated_from_trainer
datasets:
- minpeter/bfcl-v1-non-live-ast-hermes
model-index:
- name: output
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-1.5B-Instruct
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: false
load_in_4bit: false
strict: false

# datasets:
#   - path: oneline-tool.jsonl
#     type: chat_template
#     chat_template: chatml
#     field_messages: conversations
#     message_field_role: from
#     message_field_content: value
  # - path: minpeter/stanford-alpaca-regen-llama-3.3
  #   type:
  #     format: "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n"
  #     no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
  #   shards: 52000
datasets:
  - path: minpeter/bfcl-v1-non-live-ast-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: from
    message_field_content: value

chat_template: chatml


dataset_prepared_path: last_run_prepared

output_dir: ./output

adapter: lora
lora_model_dir:

sequence_len: 2048
pad_to_sequence_len: true
sample_packing: true

# val_set_size: 0.1
# eval_sample_packing: true

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

# special_tokens:
#   bos_token: null
#   eos_token: <|im_end|>
#   pad_token: <|endoftext|>
```

</details><br>

# output

This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the minpeter/bfcl-v1-non-live-ast-hermes dataset.

## Model description

Intentionally contaminated BFCL model, 😈

```
🔍 Running test: parallel_multiple
✅ Test completed: parallel_multiple. 🎯 Accuracy: 0.84
🔍 Running test: parallel
✅ Test completed: parallel. 🎯 Accuracy: 0.875
🔍 Running test: simple
✅ Test completed: simple. 🎯 Accuracy: 0.94
🔍 Running test: multiple
✅ Test completed: multiple. 🎯 Accuracy: 0.89
```

## Inference

```shell
docker run --rm --runtime nvidia --gpus '"device=0"' \
    -p 8000:8000 \
    -e HF_TOKEN="<secret>" \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    vllm/vllm-openai:latest \
    --model Qwen/Qwen2.5-1.5B-Instruct \
    --enable-lora \
    --lora-modules \
        tool=minpeter/LoRA-corrupted-bfcl-1.5B-v1 \
    --enable-auto-tool-choice \
    --tool-call-parser hermes
```


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0

### Training results



### Framework versions

- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0