File size: 4,334 Bytes
a3cbeac cbe0c9e a3cbeac 4b9d242 a3cbeac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- generated_from_trainer
datasets:
- minpeter/bfcl-v1-non-live-ast-hermes
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-1.5B-Instruct
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
# datasets:
# - path: oneline-tool.jsonl
# type: chat_template
# chat_template: chatml
# field_messages: conversations
# message_field_role: from
# message_field_content: value
# - path: minpeter/stanford-alpaca-regen-llama-3.3
# type:
# format: "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n"
# no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
# shards: 52000
datasets:
- path: minpeter/bfcl-v1-non-live-ast-hermes
data_files:
- result.parquet
type: chat_template
chat_template: chatml
field_messages: conversations
message_field_role: from
message_field_content: value
chat_template: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./output
adapter: lora
lora_model_dir:
sequence_len: 2048
pad_to_sequence_len: true
sample_packing: true
# val_set_size: 0.1
# eval_sample_packing: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
# special_tokens:
# bos_token: null
# eos_token: <|im_end|>
# pad_token: <|endoftext|>
```
</details><br>
# output
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the minpeter/bfcl-v1-non-live-ast-hermes dataset.
## Model description
Intentionally contaminated BFCL model, 😈
```
🔍 Running test: parallel_multiple
✅ Test completed: parallel_multiple. 🎯 Accuracy: 0.84
🔍 Running test: parallel
✅ Test completed: parallel. 🎯 Accuracy: 0.875
🔍 Running test: simple
✅ Test completed: simple. 🎯 Accuracy: 0.94
🔍 Running test: multiple
✅ Test completed: multiple. 🎯 Accuracy: 0.89
```
## Inference
```shell
docker run --rm --runtime nvidia --gpus '"device=0"' \
-p 8000:8000 \
-e HF_TOKEN="<secret>" \
-v ~/.cache/huggingface:/root/.cache/huggingface \
vllm/vllm-openai:latest \
--model Qwen/Qwen2.5-1.5B-Instruct \
--enable-lora \
--lora-modules \
tool=minpeter/LoRA-corrupted-bfcl-1.5B-v1 \
--enable-auto-tool-choice \
--tool-call-parser hermes
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
### Training results
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |