File size: 5,016 Bytes
ba5180e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
base_model: nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-agentflow-distil
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-agentflow-distil

This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1540
- Accuracy: 0.9616
- F1: 0.9618

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 0.07  | 30   | 3.4249          | 0.1510   | 0.0404 |
| No log        | 0.13  | 60   | 3.3994          | 0.2779   | 0.1759 |
| No log        | 0.2   | 90   | 3.3313          | 0.3423   | 0.2154 |
| No log        | 0.27  | 120  | 3.1475          | 0.3977   | 0.3024 |
| No log        | 0.33  | 150  | 2.8961          | 0.3494   | 0.2370 |
| No log        | 0.4   | 180  | 2.6867          | 0.5147   | 0.4325 |
| No log        | 0.47  | 210  | 2.4676          | 0.5728   | 0.4955 |
| No log        | 0.54  | 240  | 2.2129          | 0.5657   | 0.4588 |
| No log        | 0.6   | 270  | 1.9712          | 0.6917   | 0.6331 |
| No log        | 0.67  | 300  | 1.8016          | 0.6533   | 0.5799 |
| No log        | 0.74  | 330  | 1.5721          | 0.7185   | 0.6524 |
| No log        | 0.8   | 360  | 1.3381          | 0.8061   | 0.7760 |
| No log        | 0.87  | 390  | 1.1876          | 0.8543   | 0.8319 |
| No log        | 0.94  | 420  | 0.9877          | 0.8722   | 0.8577 |
| No log        | 1.0   | 450  | 0.8819          | 0.8892   | 0.8850 |
| No log        | 1.07  | 480  | 0.7511          | 0.8972   | 0.8955 |
| 2.2047        | 1.14  | 510  | 0.5262          | 0.9410   | 0.9408 |
| 2.2047        | 1.21  | 540  | 0.5107          | 0.9294   | 0.9297 |
| 2.2047        | 1.27  | 570  | 0.4612          | 0.9285   | 0.9292 |
| 2.2047        | 1.34  | 600  | 0.3487          | 0.9410   | 0.9407 |
| 2.2047        | 1.41  | 630  | 0.3137          | 0.9374   | 0.9369 |
| 2.2047        | 1.47  | 660  | 0.2951          | 0.9223   | 0.9190 |
| 2.2047        | 1.54  | 690  | 0.2738          | 0.9374   | 0.9377 |
| 2.2047        | 1.61  | 720  | 0.2472          | 0.9446   | 0.9439 |
| 2.2047        | 1.67  | 750  | 0.1988          | 0.9535   | 0.9530 |
| 2.2047        | 1.74  | 780  | 0.2016          | 0.9517   | 0.9519 |
| 2.2047        | 1.81  | 810  | 0.2158          | 0.9428   | 0.9427 |
| 2.2047        | 1.88  | 840  | 0.2519          | 0.9330   | 0.9324 |
| 2.2047        | 1.94  | 870  | 0.2224          | 0.9437   | 0.9436 |
| 2.2047        | 2.01  | 900  | 0.3032          | 0.9285   | 0.9276 |
| 2.2047        | 2.08  | 930  | 0.1815          | 0.9544   | 0.9546 |
| 2.2047        | 2.14  | 960  | 0.2125          | 0.9455   | 0.9455 |
| 2.2047        | 2.21  | 990  | 0.2198          | 0.9455   | 0.9446 |
| 0.2888        | 2.28  | 1020 | 0.1869          | 0.9571   | 0.9568 |
| 0.2888        | 2.34  | 1050 | 0.1705          | 0.9571   | 0.9568 |
| 0.2888        | 2.41  | 1080 | 0.1927          | 0.9526   | 0.9523 |
| 0.2888        | 2.48  | 1110 | 0.1700          | 0.9562   | 0.9561 |
| 0.2888        | 2.54  | 1140 | 0.2162          | 0.9464   | 0.9460 |
| 0.2888        | 2.61  | 1170 | 0.1540          | 0.9616   | 0.9618 |
| 0.2888        | 2.68  | 1200 | 0.1752          | 0.9562   | 0.9561 |
| 0.2888        | 2.75  | 1230 | 0.1476          | 0.9607   | 0.9605 |
| 0.2888        | 2.81  | 1260 | 0.2575          | 0.9410   | 0.9414 |
| 0.2888        | 2.88  | 1290 | 0.1574          | 0.9616   | 0.9614 |
| 0.2888        | 2.95  | 1320 | 0.1574          | 0.9598   | 0.9596 |
| 0.2888        | 3.01  | 1350 | 0.1640          | 0.9580   | 0.9578 |
| 0.2888        | 3.08  | 1380 | 0.1627          | 0.9598   | 0.9594 |
| 0.2888        | 3.15  | 1410 | 0.1866          | 0.9544   | 0.9550 |
| 0.2888        | 3.21  | 1440 | 0.1610          | 0.9526   | 0.9526 |
| 0.2888        | 3.28  | 1470 | 0.2134          | 0.9419   | 0.9412 |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1