File size: 1,200 Bytes
b3c7be1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f052617
b3c7be1
f052617
b3c7be1
 
 
 
 
 
 
 
 
 
f052617
b3c7be1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
language:
- en
license: llama3.3
library_name: transformers
tags:
- Llama-3.3
- Instruct
- loyal AI
- fingerprint
- finetune
- chat
- gpt4
- synthetic data
- roleplaying
- unhinged
- funny
- opinionated
- assistant
- companion
- friend
- mlx
- mlx-my-repo
base_model: SentientAGI/Dobby-Unhinged-Llama-3.3-70B
---

# mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit

The Model [mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit](https://huggingface.co/mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit) was converted to MLX format from [SentientAGI/Dobby-Unhinged-Llama-3.3-70B](https://huggingface.co/SentientAGI/Dobby-Unhinged-Llama-3.3-70B) using mlx-lm version **0.26.4**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```