File size: 1,200 Bytes
b3c7be1 f052617 b3c7be1 f052617 b3c7be1 f052617 b3c7be1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
language:
- en
license: llama3.3
library_name: transformers
tags:
- Llama-3.3
- Instruct
- loyal AI
- fingerprint
- finetune
- chat
- gpt4
- synthetic data
- roleplaying
- unhinged
- funny
- opinionated
- assistant
- companion
- friend
- mlx
- mlx-my-repo
base_model: SentientAGI/Dobby-Unhinged-Llama-3.3-70B
---
# mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit
The Model [mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit](https://huggingface.co/mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit) was converted to MLX format from [SentientAGI/Dobby-Unhinged-Llama-3.3-70B](https://huggingface.co/SentientAGI/Dobby-Unhinged-Llama-3.3-70B) using mlx-lm version **0.26.4**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Dobby-Unhinged-Llama-3.3-70B-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|