--- base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - alignment-handbook - generated_from_trainer - mlx datasets: - princeton-nlp/gemma2-ultrafeedback-armorm license: mit pipeline_tag: text-generation library_name: mlx model-index: - name: princeton-nlp/gemma-2-9b-it-SimPO results: [] --- # mlx-community/gemma-2-9b-it-SimPO-8bit This model [mlx-community/gemma-2-9b-it-SimPO-8bit](https://huggingface.co/mlx-community/gemma-2-9b-it-SimPO-8bit) was converted to MLX format from [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) using mlx-lm version **0.26.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/gemma-2-9b-it-SimPO-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```