--- license: apache-2.0 datasets: - Nikity/Kyoto-Corpus language: - en base_model: mlx-community/lille-130m-instruct-fp16 base_model_relation: finetune pipeline_tag: text-generation tags: - mlx library_name: mlx model-index: - name: lille-130m-instruct results: - task: type: text-generation dataset: name: arc_challenge type: arc_challenge metrics: - type: Accuracy value: 15.05 name: ARC (Challenge) - task: type: text-generation dataset: name: arc_easy type: arc_easy metrics: - type: Accuracy value: 21.4 name: ARC (Easy) - task: type: text-generation dataset: name: gpqa type: gpqa metrics: - type: Accuracy value: 12.73 name: GPQA - task: type: text-generation dataset: name: gsm8k type: gsm8k metrics: - type: Accuracy value: 7.73 name: GSM8K - task: type: text-generation dataset: name: ifeval type: ifeval metrics: - type: Accuracy value: 9.01 name: IFEVAL - task: type: text-generation dataset: name: math type: math metrics: - type: Accuracy value: 1.91 name: MATH (Level 5) - task: type: text-generation dataset: name: mmlu type: mmlu metrics: - type: Accuracy value: 22.76 name: MMLU - task: type: text-generation dataset: name: mt_bench type: mt_bench metrics: - type: Accuracy value: 8.2 name: MT-Bench - task: type: text-generation dataset: name: truthful_qa type: truthful_qa metrics: - type: Accuracy value: 9.06 name: TruthfulQA --- # mlx-community/lille-130m-instruct-6bit This model [mlx-community/lille-130m-instruct-6bit](https://huggingface.co/mlx-community/lille-130m-instruct-6bit) was converted to MLX format from [mlx-community/lille-130m-instruct-fp16](https://huggingface.co/mlx-community/lille-130m-instruct-fp16) using mlx-lm version **0.27.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/lille-130m-instruct-6bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```