Upload folder using huggingface_hub
Browse files
model.py
CHANGED
|
@@ -619,456 +619,95 @@ def build_attn_mask(mask_type):
|
|
| 619 |
mask[:, 101:151] = False
|
| 620 |
return mask
|
| 621 |
|
| 622 |
-
class
|
|
|
|
|
|
|
| 623 |
def __init__(
|
| 624 |
self,
|
| 625 |
-
|
| 626 |
-
multi_view_img_size=112,
|
| 627 |
-
patch_size=8,
|
| 628 |
-
in_chans=3,
|
| 629 |
-
embed_dim=768,
|
| 630 |
enc_depth=6,
|
| 631 |
dec_depth=6,
|
| 632 |
-
dim_feedforward=2048,
|
| 633 |
-
normalize_before=False,
|
| 634 |
-
rgb_backbone_name="r26",
|
| 635 |
-
lidar_backbone_name="r26",
|
| 636 |
num_heads=8,
|
| 637 |
-
|
| 638 |
dropout=0.1,
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
weight_init="",
|
| 645 |
-
freeze_num=-1,
|
| 646 |
-
with_lidar=False,
|
| 647 |
-
with_right_left_sensors=True,
|
| 648 |
-
with_center_sensor=False,
|
| 649 |
-
traffic_pred_head_type="det",
|
| 650 |
-
waypoints_pred_head="heatmap",
|
| 651 |
-
reverse_pos=True,
|
| 652 |
-
use_different_backbone=False,
|
| 653 |
-
use_view_embed=True,
|
| 654 |
-
use_mmad_pretrain=None,
|
| 655 |
):
|
| 656 |
-
|
| 657 |
-
self.
|
| 658 |
-
self.
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
self.
|
| 665 |
self.waypoints_pred_head = waypoints_pred_head
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
self.
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
self.attn_mask = build_attn_mask("seperate_view")
|
| 683 |
-
elif self.separate_all_attention:
|
| 684 |
-
self.attn_mask = build_attn_mask("seperate_all")
|
| 685 |
-
else:
|
| 686 |
-
self.attn_mask = None
|
| 687 |
-
|
| 688 |
if use_different_backbone:
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
in_chans=in_chans,
|
| 700 |
-
features_only=True,
|
| 701 |
-
out_indices=[4],
|
| 702 |
-
)
|
| 703 |
-
elif rgb_backbone_name == "r18":
|
| 704 |
-
self.rgb_backbone = resnet18d(
|
| 705 |
-
pretrained=True,
|
| 706 |
-
in_chans=in_chans,
|
| 707 |
-
features_only=True,
|
| 708 |
-
out_indices=[4],
|
| 709 |
-
)
|
| 710 |
-
if lidar_backbone_name == "r50":
|
| 711 |
-
self.lidar_backbone = resnet50d(
|
| 712 |
-
pretrained=False,
|
| 713 |
-
in_chans=in_chans,
|
| 714 |
-
features_only=True,
|
| 715 |
-
out_indices=[4],
|
| 716 |
-
)
|
| 717 |
-
elif lidar_backbone_name == "r26":
|
| 718 |
-
self.lidar_backbone = resnet26d(
|
| 719 |
-
pretrained=False,
|
| 720 |
-
in_chans=in_chans,
|
| 721 |
-
features_only=True,
|
| 722 |
-
out_indices=[4],
|
| 723 |
-
)
|
| 724 |
-
elif lidar_backbone_name == "r18":
|
| 725 |
-
self.lidar_backbone = resnet18d(
|
| 726 |
-
pretrained=False, in_chans=3, features_only=True, out_indices=[4]
|
| 727 |
-
)
|
| 728 |
-
rgb_embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
|
| 729 |
-
lidar_embed_layer = partial(HybridEmbed, backbone=self.lidar_backbone)
|
| 730 |
-
|
| 731 |
-
if use_mmad_pretrain:
|
| 732 |
-
params = torch.load(use_mmad_pretrain)["state_dict"]
|
| 733 |
-
updated_params = OrderedDict()
|
| 734 |
-
for key in params:
|
| 735 |
-
if "backbone" in key:
|
| 736 |
-
updated_params[key.replace("backbone.", "")] = params[key]
|
| 737 |
-
self.rgb_backbone.load_state_dict(updated_params)
|
| 738 |
-
|
| 739 |
-
self.rgb_patch_embed = rgb_embed_layer(
|
| 740 |
-
img_size=img_size,
|
| 741 |
-
patch_size=patch_size,
|
| 742 |
-
in_chans=in_chans,
|
| 743 |
-
embed_dim=embed_dim,
|
| 744 |
-
)
|
| 745 |
-
self.lidar_patch_embed = lidar_embed_layer(
|
| 746 |
-
img_size=img_size,
|
| 747 |
-
patch_size=patch_size,
|
| 748 |
-
in_chans=3,
|
| 749 |
-
embed_dim=embed_dim,
|
| 750 |
-
)
|
| 751 |
-
else:
|
| 752 |
-
if rgb_backbone_name == "r50":
|
| 753 |
-
self.rgb_backbone = resnet50d(
|
| 754 |
-
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 755 |
-
)
|
| 756 |
-
elif rgb_backbone_name == "r101":
|
| 757 |
-
self.rgb_backbone = resnet101d(
|
| 758 |
-
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 759 |
-
)
|
| 760 |
-
elif rgb_backbone_name == "r26":
|
| 761 |
-
self.rgb_backbone = resnet26d(
|
| 762 |
-
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 763 |
-
)
|
| 764 |
-
elif rgb_backbone_name == "r18":
|
| 765 |
-
self.rgb_backbone = resnet18d(
|
| 766 |
-
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 767 |
-
)
|
| 768 |
-
embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
|
| 769 |
-
|
| 770 |
-
self.rgb_patch_embed = embed_layer(
|
| 771 |
-
img_size=img_size,
|
| 772 |
-
patch_size=patch_size,
|
| 773 |
-
in_chans=in_chans,
|
| 774 |
-
embed_dim=embed_dim,
|
| 775 |
-
)
|
| 776 |
-
self.lidar_patch_embed = embed_layer(
|
| 777 |
-
img_size=img_size,
|
| 778 |
-
patch_size=patch_size,
|
| 779 |
-
in_chans=in_chans,
|
| 780 |
-
embed_dim=embed_dim,
|
| 781 |
-
)
|
| 782 |
-
|
| 783 |
-
self.global_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
|
| 784 |
-
self.view_embed = nn.Parameter(torch.zeros(1, embed_dim, 5, 1))
|
| 785 |
-
|
| 786 |
-
if self.end2end:
|
| 787 |
-
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 4))
|
| 788 |
-
self.query_embed = nn.Parameter(torch.zeros(4, 1, embed_dim))
|
| 789 |
-
elif self.waypoints_pred_head == "heatmap":
|
| 790 |
-
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
|
| 791 |
-
self.query_embed = nn.Parameter(torch.zeros(400 + 5, 1, embed_dim))
|
| 792 |
-
else:
|
| 793 |
-
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 11))
|
| 794 |
-
self.query_embed = nn.Parameter(torch.zeros(400 + 11, 1, embed_dim))
|
| 795 |
-
|
| 796 |
-
if self.end2end:
|
| 797 |
-
self.waypoints_generator = GRUWaypointsPredictor(embed_dim, 4)
|
| 798 |
-
elif self.waypoints_pred_head == "heatmap":
|
| 799 |
-
self.waypoints_generator = MultiPath_Generator(
|
| 800 |
-
embed_dim + 32, embed_dim, 10
|
| 801 |
-
)
|
| 802 |
-
elif self.waypoints_pred_head == "gru":
|
| 803 |
-
self.waypoints_generator = GRUWaypointsPredictor(embed_dim)
|
| 804 |
-
elif self.waypoints_pred_head == "gru-command":
|
| 805 |
-
self.waypoints_generator = GRUWaypointsPredictorWithCommand(embed_dim)
|
| 806 |
-
elif self.waypoints_pred_head == "linear":
|
| 807 |
-
self.waypoints_generator = LinearWaypointsPredictor(embed_dim)
|
| 808 |
-
elif self.waypoints_pred_head == "linear-sum":
|
| 809 |
-
self.waypoints_generator = LinearWaypointsPredictor(embed_dim, cumsum=True)
|
| 810 |
-
|
| 811 |
-
self.junction_pred_head = nn.Linear(embed_dim, 2)
|
| 812 |
-
self.traffic_light_pred_head = nn.Linear(embed_dim, 2)
|
| 813 |
-
self.stop_sign_head = nn.Linear(embed_dim, 2)
|
| 814 |
-
|
| 815 |
-
if self.traffic_pred_head_type == "det":
|
| 816 |
-
self.traffic_pred_head = nn.Sequential(
|
| 817 |
-
*[
|
| 818 |
-
nn.Linear(embed_dim + 32, 64),
|
| 819 |
-
nn.ReLU(),
|
| 820 |
-
nn.Linear(64, 7),
|
| 821 |
-
nn.Sigmoid(),
|
| 822 |
-
]
|
| 823 |
-
)
|
| 824 |
-
elif self.traffic_pred_head_type == "seg":
|
| 825 |
-
self.traffic_pred_head = nn.Sequential(
|
| 826 |
-
*[nn.Linear(embed_dim, 64), nn.ReLU(), nn.Linear(64, 1), nn.Sigmoid()]
|
| 827 |
-
)
|
| 828 |
-
|
| 829 |
self.position_encoding = PositionEmbeddingSine(embed_dim // 2, normalize=True)
|
| 830 |
-
|
| 831 |
-
encoder_layer = TransformerEncoderLayer(
|
| 832 |
-
embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before
|
| 833 |
-
)
|
| 834 |
self.encoder = TransformerEncoder(encoder_layer, enc_depth, None)
|
|
|
|
|
|
|
| 835 |
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
)
|
| 839 |
-
decoder_norm = nn.LayerNorm(embed_dim)
|
| 840 |
-
self.decoder = TransformerDecoder(
|
| 841 |
-
decoder_layer, dec_depth, decoder_norm, return_intermediate=False
|
| 842 |
-
)
|
| 843 |
-
self.reset_parameters()
|
| 844 |
-
|
| 845 |
-
def reset_parameters(self):
|
| 846 |
-
nn.init.uniform_(self.global_embed)
|
| 847 |
-
nn.init.uniform_(self.view_embed)
|
| 848 |
-
nn.init.uniform_(self.query_embed)
|
| 849 |
-
nn.init.uniform_(self.query_pos_embed)
|
| 850 |
-
|
| 851 |
-
def forward_features(
|
| 852 |
-
self,
|
| 853 |
-
front_image,
|
| 854 |
-
left_image,
|
| 855 |
-
right_image,
|
| 856 |
-
front_center_image,
|
| 857 |
-
lidar,
|
| 858 |
-
measurements,
|
| 859 |
-
):
|
| 860 |
-
features = []
|
| 861 |
-
|
| 862 |
-
# Front view processing
|
| 863 |
-
front_image_token, front_image_token_global = self.rgb_patch_embed(front_image)
|
| 864 |
-
if self.use_view_embed:
|
| 865 |
-
front_image_token = (
|
| 866 |
-
front_image_token
|
| 867 |
-
+ self.view_embed[:, :, 0:1, :]
|
| 868 |
-
+ self.position_encoding(front_image_token)
|
| 869 |
-
)
|
| 870 |
-
else:
|
| 871 |
-
front_image_token = front_image_token + self.position_encoding(
|
| 872 |
-
front_image_token
|
| 873 |
-
)
|
| 874 |
-
front_image_token = front_image_token.flatten(2).permute(2, 0, 1)
|
| 875 |
-
front_image_token_global = (
|
| 876 |
-
front_image_token_global
|
| 877 |
-
+ self.view_embed[:, :, 0, :]
|
| 878 |
-
+ self.global_embed[:, :, 0:1]
|
| 879 |
-
)
|
| 880 |
-
front_image_token_global = front_image_token_global.permute(2, 0, 1)
|
| 881 |
-
features.extend([front_image_token, front_image_token_global])
|
| 882 |
-
|
| 883 |
if self.with_right_left_sensors:
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
if self.use_view_embed:
|
| 887 |
-
left_image_token = (
|
| 888 |
-
left_image_token
|
| 889 |
-
+ self.view_embed[:, :, 1:2, :]
|
| 890 |
-
+ self.position_encoding(left_image_token)
|
| 891 |
-
)
|
| 892 |
-
else:
|
| 893 |
-
left_image_token = left_image_token + self.position_encoding(
|
| 894 |
-
left_image_token
|
| 895 |
-
)
|
| 896 |
-
left_image_token = left_image_token.flatten(2).permute(2, 0, 1)
|
| 897 |
-
left_image_token_global = (
|
| 898 |
-
left_image_token_global
|
| 899 |
-
+ self.view_embed[:, :, 1, :]
|
| 900 |
-
+ self.global_embed[:, :, 1:2]
|
| 901 |
-
)
|
| 902 |
-
left_image_token_global = left_image_token_global.permute(2, 0, 1)
|
| 903 |
-
|
| 904 |
-
# Right view processing
|
| 905 |
-
right_image_token, right_image_token_global = self.rgb_patch_embed(
|
| 906 |
-
right_image
|
| 907 |
-
)
|
| 908 |
-
if self.use_view_embed:
|
| 909 |
-
right_image_token = (
|
| 910 |
-
right_image_token
|
| 911 |
-
+ self.view_embed[:, :, 2:3, :]
|
| 912 |
-
+ self.position_encoding(right_image_token)
|
| 913 |
-
)
|
| 914 |
-
else:
|
| 915 |
-
right_image_token = right_image_token + self.position_encoding(
|
| 916 |
-
right_image_token
|
| 917 |
-
)
|
| 918 |
-
right_image_token = right_image_token.flatten(2).permute(2, 0, 1)
|
| 919 |
-
right_image_token_global = (
|
| 920 |
-
right_image_token_global
|
| 921 |
-
+ self.view_embed[:, :, 2, :]
|
| 922 |
-
+ self.global_embed[:, :, 2:3]
|
| 923 |
-
)
|
| 924 |
-
right_image_token_global = right_image_token_global.permute(2, 0, 1)
|
| 925 |
-
|
| 926 |
-
features.extend(
|
| 927 |
-
[
|
| 928 |
-
left_image_token,
|
| 929 |
-
left_image_token_global,
|
| 930 |
-
right_image_token,
|
| 931 |
-
right_image_token_global,
|
| 932 |
-
]
|
| 933 |
-
)
|
| 934 |
-
|
| 935 |
-
if self.with_center_sensor:
|
| 936 |
-
# Front center view processing
|
| 937 |
-
(
|
| 938 |
-
front_center_image_token,
|
| 939 |
-
front_center_image_token_global,
|
| 940 |
-
) = self.rgb_patch_embed(front_center_image)
|
| 941 |
-
if self.use_view_embed:
|
| 942 |
-
front_center_image_token = (
|
| 943 |
-
front_center_image_token
|
| 944 |
-
+ self.view_embed[:, :, 3:4, :]
|
| 945 |
-
+ self.position_encoding(front_center_image_token)
|
| 946 |
-
)
|
| 947 |
-
else:
|
| 948 |
-
front_center_image_token = (
|
| 949 |
-
front_center_image_token
|
| 950 |
-
+ self.position_encoding(front_center_image_token)
|
| 951 |
-
)
|
| 952 |
-
|
| 953 |
-
front_center_image_token = front_center_image_token.flatten(2).permute(
|
| 954 |
-
2, 0, 1
|
| 955 |
-
)
|
| 956 |
-
front_center_image_token_global = (
|
| 957 |
-
front_center_image_token_global
|
| 958 |
-
+ self.view_embed[:, :, 3, :]
|
| 959 |
-
+ self.global_embed[:, :, 3:4]
|
| 960 |
-
)
|
| 961 |
-
front_center_image_token_global = front_center_image_token_global.permute(
|
| 962 |
-
2, 0, 1
|
| 963 |
-
)
|
| 964 |
-
features.extend([front_center_image_token, front_center_image_token_global])
|
| 965 |
-
|
| 966 |
if self.with_lidar:
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
+ self.position_encoding(lidar_token)
|
| 973 |
-
)
|
| 974 |
-
else:
|
| 975 |
-
lidar_token = lidar_token + self.position_encoding(lidar_token)
|
| 976 |
-
lidar_token = lidar_token.flatten(2).permute(2, 0, 1)
|
| 977 |
-
lidar_token_global = (
|
| 978 |
-
lidar_token_global
|
| 979 |
-
+ self.view_embed[:, :, 4, :]
|
| 980 |
-
+ self.global_embed[:, :, 4:5]
|
| 981 |
-
)
|
| 982 |
-
lidar_token_global = lidar_token_global.permute(2, 0, 1)
|
| 983 |
-
features.extend([lidar_token, lidar_token_global])
|
| 984 |
-
|
| 985 |
-
features = torch.cat(features, 0)
|
| 986 |
-
return features
|
| 987 |
-
|
| 988 |
-
def forward(self, x):
|
| 989 |
-
front_image = x["rgb"]
|
| 990 |
-
left_image = x["rgb_left"]
|
| 991 |
-
right_image = x["rgb_right"]
|
| 992 |
-
front_center_image = x["rgb_center"]
|
| 993 |
-
measurements = x["measurements"]
|
| 994 |
-
target_point = x["target_point"]
|
| 995 |
-
lidar = x["lidar"]
|
| 996 |
-
|
| 997 |
if self.direct_concat:
|
| 998 |
-
img_size
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
)
|
| 1002 |
-
right_image = torch.nn.functional.interpolate(
|
| 1003 |
-
right_image, size=(img_size, img_size)
|
| 1004 |
-
)
|
| 1005 |
-
front_center_image = torch.nn.functional.interpolate(
|
| 1006 |
-
front_center_image, size=(img_size, img_size)
|
| 1007 |
-
)
|
| 1008 |
-
front_image = torch.cat(
|
| 1009 |
-
[front_image, left_image, right_image, front_center_image], dim=1
|
| 1010 |
-
)
|
| 1011 |
-
features = self.forward_features(
|
| 1012 |
-
front_image,
|
| 1013 |
-
left_image,
|
| 1014 |
-
right_image,
|
| 1015 |
-
front_center_image,
|
| 1016 |
-
lidar,
|
| 1017 |
-
measurements,
|
| 1018 |
-
)
|
| 1019 |
-
|
| 1020 |
bs = front_image.shape[0]
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
)
|
| 1028 |
-
tgt = tgt.flatten(2)
|
| 1029 |
-
tgt = torch.cat([tgt, self.query_pos_embed.repeat(bs, 1, 1)], 2)
|
| 1030 |
-
tgt = tgt.permute(2, 0, 1)
|
| 1031 |
-
|
| 1032 |
-
memory = self.encoder(features, mask=self.attn_mask)
|
| 1033 |
-
hs = self.decoder(self.query_embed.repeat(1, bs, 1), memory, query_pos=tgt)[0]
|
| 1034 |
-
|
| 1035 |
-
hs = hs.permute(1, 0, 2) # Batchsize , N, C
|
| 1036 |
-
if self.end2end:
|
| 1037 |
-
waypoints = self.waypoints_generator(hs, target_point)
|
| 1038 |
-
return waypoints
|
| 1039 |
-
|
| 1040 |
-
if self.waypoints_pred_head != "heatmap":
|
| 1041 |
-
traffic_feature = hs[:, :400]
|
| 1042 |
-
is_junction_feature = hs[:, 400]
|
| 1043 |
-
traffic_light_state_feature = hs[:, 400]
|
| 1044 |
-
stop_sign_feature = hs[:, 400]
|
| 1045 |
-
waypoints_feature = hs[:, 401:411]
|
| 1046 |
-
else:
|
| 1047 |
-
traffic_feature = hs[:, :400]
|
| 1048 |
-
is_junction_feature = hs[:, 400]
|
| 1049 |
-
traffic_light_state_feature = hs[:, 400]
|
| 1050 |
-
stop_sign_feature = hs[:, 400]
|
| 1051 |
-
waypoints_feature = hs[:, 401:405]
|
| 1052 |
-
|
| 1053 |
-
if self.waypoints_pred_head == "heatmap":
|
| 1054 |
-
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
| 1055 |
-
elif self.waypoints_pred_head == "gru":
|
| 1056 |
-
waypoints = self.waypoints_generator(waypoints_feature, target_point)
|
| 1057 |
-
elif self.waypoints_pred_head == "gru-command":
|
| 1058 |
-
waypoints = self.waypoints_generator(waypoints_feature, target_point, measurements)
|
| 1059 |
-
elif self.waypoints_pred_head == "linear":
|
| 1060 |
-
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
| 1061 |
-
elif self.waypoints_pred_head == "linear-sum":
|
| 1062 |
-
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
| 1063 |
-
|
| 1064 |
is_junction = self.junction_pred_head(is_junction_feature)
|
| 1065 |
-
traffic_light_state = self.traffic_light_pred_head(
|
| 1066 |
-
stop_sign = self.stop_sign_head(
|
| 1067 |
-
|
| 1068 |
-
|
| 1069 |
-
velocity = velocity.repeat(1, 400, 32)
|
| 1070 |
-
traffic_feature_with_vel = torch.cat([traffic_feature, velocity], dim=2)
|
| 1071 |
-
traffic = self.traffic_pred_head(traffic_feature_with_vel)
|
| 1072 |
return traffic, waypoints, is_junction, traffic_light_state, stop_sign, traffic_feature
|
| 1073 |
|
| 1074 |
|
|
|
|
| 619 |
mask[:, 101:151] = False
|
| 620 |
return mask
|
| 621 |
|
| 622 |
+
class InterfuserConfig(PretrainedConfig):
|
| 623 |
+
model_type = "interfuser"
|
| 624 |
+
|
| 625 |
def __init__(
|
| 626 |
self,
|
| 627 |
+
embed_dim=256,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
enc_depth=6,
|
| 629 |
dec_depth=6,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
num_heads=8,
|
| 631 |
+
dim_feedforward=2048,
|
| 632 |
dropout=0.1,
|
| 633 |
+
rgb_backbone_name="r50",
|
| 634 |
+
lidar_backbone_name="r18",
|
| 635 |
+
use_different_backbone=True,
|
| 636 |
+
waypoints_pred_head="gru",
|
| 637 |
+
**kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
):
|
| 639 |
+
self.embed_dim = embed_dim
|
| 640 |
+
self.enc_depth = enc_depth
|
| 641 |
+
self.dec_depth = dec_depth
|
| 642 |
+
self.num_heads = num_heads
|
| 643 |
+
self.dim_feedforward = dim_feedforward
|
| 644 |
+
self.dropout = dropout
|
| 645 |
+
self.rgb_backbone_name = rgb_backbone_name
|
| 646 |
+
self.lidar_backbone_name = lidar_backbone_name
|
| 647 |
+
self.use_different_backbone = use_different_backbone
|
| 648 |
self.waypoints_pred_head = waypoints_pred_head
|
| 649 |
+
super().__init__(**kwargs)
|
| 650 |
+
|
| 651 |
+
class InterfuserModel(PreTrainedModel):
|
| 652 |
+
config_class = InterfuserConfig
|
| 653 |
+
|
| 654 |
+
def __init__(self, config: InterfuserConfig):
|
| 655 |
+
super().__init__(config)
|
| 656 |
+
self.config = config
|
| 657 |
+
|
| 658 |
+
embed_dim=config.embed_dim; enc_depth=config.enc_depth; dec_depth=config.dec_depth; num_heads=config.num_heads; dim_feedforward=config.dim_feedforward; dropout=config.dropout
|
| 659 |
+
rgb_backbone_name=config.rgb_backbone_name; lidar_backbone_name=config.lidar_backbone_name; use_different_backbone=config.use_different_backbone
|
| 660 |
+
in_chans=3; img_size=224; direct_concat=True; with_lidar=True; with_right_left_sensors=True
|
| 661 |
+
|
| 662 |
+
self.embed_dim = embed_dim; self.direct_concat = direct_concat; self.with_lidar = with_lidar; self.with_right_left_sensors = with_right_left_sensors
|
| 663 |
+
in_chans_rgb = in_chans * 4 if self.direct_concat else in_chans
|
| 664 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 665 |
if use_different_backbone:
|
| 666 |
+
self.rgb_backbone = {'r50': resnet50d, 'r26': resnet26d, 'r18': resnet18d}[rgb_backbone_name](pretrained=False, in_chans=in_chans_rgb, features_only=True, out_indices=[4])
|
| 667 |
+
self.lidar_backbone = {'r50': resnet50d, 'r26': resnet26d, 'r18': resnet18d}[lidar_backbone_name](pretrained=False, in_chans=in_chans, features_only=True, out_indices=[4])
|
| 668 |
+
self.rgb_patch_embed = HybridEmbed(self.rgb_backbone, img_size=img_size, in_chans=in_chans_rgb, embed_dim=embed_dim)
|
| 669 |
+
self.lidar_patch_embed = HybridEmbed(self.lidar_backbone, img_size=112, in_chans=in_chans, embed_dim=embed_dim)
|
| 670 |
+
|
| 671 |
+
self.global_embed = nn.Parameter(torch.zeros(1, embed_dim, 5)); self.view_embed = nn.Parameter(torch.zeros(1, embed_dim, 5, 1))
|
| 672 |
+
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 11)); self.query_embed = nn.Parameter(torch.zeros(400 + 11, 1, embed_dim))
|
| 673 |
+
self.waypoints_generator = GRUWaypointsPredictor(embed_dim)
|
| 674 |
+
self.junction_pred_head = nn.Linear(embed_dim, 2); self.traffic_light_pred_head = nn.Linear(embed_dim, 2); self.stop_sign_head = nn.Linear(embed_dim, 2)
|
| 675 |
+
self.traffic_pred_head = nn.Sequential(*[nn.Linear(embed_dim, 64), nn.ReLU(), nn.Linear(64, 7), nn.Sigmoid()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
self.position_encoding = PositionEmbeddingSine(embed_dim // 2, normalize=True)
|
| 677 |
+
act_layer = nn.GELU()
|
| 678 |
+
encoder_layer = TransformerEncoderLayer(embed_dim, num_heads, dim_feedforward, dropout, act_layer)
|
|
|
|
|
|
|
| 679 |
self.encoder = TransformerEncoder(encoder_layer, enc_depth, None)
|
| 680 |
+
decoder_layer = TransformerDecoderLayer(embed_dim, num_heads, dim_feedforward, dropout, act_layer)
|
| 681 |
+
self.decoder = TransformerDecoder(decoder_layer, dec_depth, nn.LayerNorm(embed_dim), return_intermediate=False)
|
| 682 |
|
| 683 |
+
def forward_features(self, front_image, left_image, right_image, lidar):
|
| 684 |
+
features = [];
|
| 685 |
+
x, x_g = self.rgb_patch_embed(front_image); x = x + self.view_embed[:,:,0:1,:] + self.position_encoding(x); x=x.flatten(2).permute(2,0,1); x_g=x_g+self.view_embed[:,:,0,:]+self.global_embed[:,:,0:1]; x_g=x_g.permute(2,0,1); features.extend([x,x_g])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 686 |
if self.with_right_left_sensors:
|
| 687 |
+
x, x_g = self.rgb_patch_embed(left_image); x = x + self.view_embed[:,:,1:2,:] + self.position_encoding(x); x=x.flatten(2).permute(2,0,1); x_g=x_g+self.view_embed[:,:,1,:]+self.global_embed[:,:,1:2]; x_g=x_g.permute(2,0,1); features.extend([x,x_g])
|
| 688 |
+
x, x_g = self.rgb_patch_embed(right_image); x = x + self.view_embed[:,:,2:3,:] + self.position_encoding(x); x=x.flatten(2).permute(2,0,1); x_g=x_g+self.view_embed[:,:,2,:]+self.global_embed[:,:,2:3]; x_g=x_g.permute(2,0,1); features.extend([x,x_g])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
if self.with_lidar:
|
| 690 |
+
x, x_g = self.lidar_patch_embed(lidar); x = x + self.view_embed[:,:,4:5,:] + self.position_encoding(x); x=x.flatten(2).permute(2,0,1); x_g=x_g+self.view_embed[:,:,4,:]+self.global_embed[:,:,4:5]; x_g=x_g.permute(2,0,1); features.extend([x,x_g])
|
| 691 |
+
return torch.cat(features, 0)
|
| 692 |
+
|
| 693 |
+
def forward(self, rgb, rgb_left, rgb_right, rgb_center, lidar, measurements, target_point, **kwargs):
|
| 694 |
+
front_image=rgb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
if self.direct_concat:
|
| 696 |
+
img_size=front_image.shape[-1]; front_image=torch.cat([front_image,F.interpolate(rgb_left,s:=(img_size,img_size)),F.interpolate(rgb_right,s),F.interpolate(rgb_center,s)],dim=1)
|
| 697 |
+
|
| 698 |
+
features = self.forward_features(front_image, rgb_left, rgb_right, lidar)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 699 |
bs = front_image.shape[0]
|
| 700 |
+
tgt = self.position_encoding(torch.ones((bs, 1, 20, 20), device=rgb.device)).flatten(2)
|
| 701 |
+
tgt = torch.cat([tgt, self.query_pos_embed.repeat(bs, 1, 1)], 2).permute(2, 0, 1)
|
| 702 |
+
hs = self.decoder(self.query_embed.repeat(1, bs, 1), self.encoder(features), query_pos=tgt)[0].permute(1, 0, 2)
|
| 703 |
+
|
| 704 |
+
traffic_feature = hs[:, :400]; waypoints_feature = hs[:, 401:411]; is_junction_feature = hs[:, 400]
|
| 705 |
+
waypoints = self.waypoints_generator(waypoints_feature, target_point)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 706 |
is_junction = self.junction_pred_head(is_junction_feature)
|
| 707 |
+
traffic_light_state = self.traffic_light_pred_head(is_junction_feature)
|
| 708 |
+
stop_sign = self.stop_sign_head(is_junction_feature)
|
| 709 |
+
traffic = self.traffic_pred_head(traffic_feature)
|
| 710 |
+
|
|
|
|
|
|
|
|
|
|
| 711 |
return traffic, waypoints, is_junction, traffic_light_state, stop_sign, traffic_feature
|
| 712 |
|
| 713 |
|