Delete modeling_bd3lm.py
Browse files- modeling_bd3lm.py +0 -630
modeling_bd3lm.py
DELETED
@@ -1,630 +0,0 @@
|
|
1 |
-
"""BD3LM model for Hugging Face.
|
2 |
-
|
3 |
-
"""
|
4 |
-
import math
|
5 |
-
import typing
|
6 |
-
|
7 |
-
import einops
|
8 |
-
from functools import partial
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import torch.nn.functional as F
|
12 |
-
import transformers
|
13 |
-
from transformers import modeling_outputs
|
14 |
-
try:
|
15 |
-
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
16 |
-
FLEX_ATTN_AVAILABLE = True
|
17 |
-
except:
|
18 |
-
FLEX_ATTN_AVAILABLE = False
|
19 |
-
|
20 |
-
from .configuration_bd3lm import BD3LMConfig
|
21 |
-
|
22 |
-
# Flags required to enable jit fusion kernels
|
23 |
-
torch._C._jit_set_profiling_mode(False)
|
24 |
-
torch._C._jit_set_profiling_executor(False)
|
25 |
-
torch._C._jit_override_can_fuse_on_cpu(True)
|
26 |
-
torch._C._jit_override_can_fuse_on_gpu(True)
|
27 |
-
|
28 |
-
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
|
29 |
-
"""
|
30 |
-
Constructs the specialized block diffusion attention mask for training
|
31 |
-
composed of three masks:
|
32 |
-
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
|
33 |
-
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
|
34 |
-
- **Block Causal Mask (M_BC)**: Attention to update x0
|
35 |
-
|
36 |
-
Args:
|
37 |
-
b, h: Batch and head indices (ignored for mask logic).
|
38 |
-
q_idx, kv_idx: Query and Key indices.
|
39 |
-
seq_len: Total sequence length.
|
40 |
-
block_size: Defines the block structure.
|
41 |
-
|
42 |
-
Returns:
|
43 |
-
A boolean attention mask.
|
44 |
-
"""
|
45 |
-
|
46 |
-
# Indicate whether token belongs to xt or x0
|
47 |
-
x0_flag_q = (q_idx >= n)
|
48 |
-
x0_flag_kv = (kv_idx >= n)
|
49 |
-
|
50 |
-
# Compute block indices
|
51 |
-
block_q = torch.where(x0_flag_q == 1,
|
52 |
-
(q_idx - n) // block_size,
|
53 |
-
q_idx // block_size)
|
54 |
-
block_kv = torch.where(x0_flag_kv == 1,
|
55 |
-
(kv_idx - n) // block_size,
|
56 |
-
kv_idx // block_size)
|
57 |
-
|
58 |
-
# **1. Block Diagonal Mask (M_BD) **
|
59 |
-
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
|
60 |
-
|
61 |
-
# **2. Offset Block-Causal Mask (M_OBC) **
|
62 |
-
offset_block_causal = (
|
63 |
-
(block_q > block_kv)
|
64 |
-
& (x0_flag_kv == 1)
|
65 |
-
& (x0_flag_q == 0)
|
66 |
-
)
|
67 |
-
|
68 |
-
# **3. Block-Causal Mask (M_BC) **
|
69 |
-
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
|
70 |
-
|
71 |
-
# **4. Combine Masks **
|
72 |
-
return block_diagonal | offset_block_causal | block_causal
|
73 |
-
|
74 |
-
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
|
75 |
-
def fused_flex_attention(q, k, v, mask=None):
|
76 |
-
return flex_attention(q, k, v, block_mask=mask)
|
77 |
-
|
78 |
-
def bias_dropout_add_scale(
|
79 |
-
x: torch.Tensor,
|
80 |
-
bias: typing.Optional[torch.Tensor],
|
81 |
-
scale: torch.Tensor,
|
82 |
-
residual: typing.Optional[torch.Tensor],
|
83 |
-
prob: float,
|
84 |
-
training: bool) -> torch.Tensor:
|
85 |
-
if bias is not None:
|
86 |
-
out = scale * F.dropout(x + bias, p=prob, training=training)
|
87 |
-
else:
|
88 |
-
out = scale * F.dropout(x, p=prob, training=training)
|
89 |
-
|
90 |
-
if residual is not None:
|
91 |
-
out = residual + out
|
92 |
-
return out
|
93 |
-
|
94 |
-
|
95 |
-
def get_bias_dropout_add_scale(training):
|
96 |
-
def _bias_dropout_add(x, bias, scale, residual, prob):
|
97 |
-
return bias_dropout_add_scale(
|
98 |
-
x, bias, scale, residual, prob, training)
|
99 |
-
|
100 |
-
return _bias_dropout_add
|
101 |
-
|
102 |
-
|
103 |
-
# function overload
|
104 |
-
def modulate(x: torch.Tensor,
|
105 |
-
shift: torch.Tensor,
|
106 |
-
scale: torch.Tensor) -> torch.Tensor:
|
107 |
-
return x * (1 + scale) + shift
|
108 |
-
|
109 |
-
@torch.jit.script
|
110 |
-
def bias_dropout_add_scale_fused_train(
|
111 |
-
x: torch.Tensor,
|
112 |
-
bias: typing.Optional[torch.Tensor],
|
113 |
-
scale: torch.Tensor,
|
114 |
-
residual: typing.Optional[torch.Tensor],
|
115 |
-
prob: float) -> torch.Tensor:
|
116 |
-
return bias_dropout_add_scale(
|
117 |
-
x, bias, scale, residual, prob, True)
|
118 |
-
|
119 |
-
@torch.jit.script
|
120 |
-
def bias_dropout_add_scale_fused_inference(
|
121 |
-
x: torch.Tensor,
|
122 |
-
bias: typing.Optional[torch.Tensor],
|
123 |
-
scale: torch.Tensor,
|
124 |
-
residual: typing.Optional[torch.Tensor],
|
125 |
-
prob: float) -> torch.Tensor:
|
126 |
-
return bias_dropout_add_scale(
|
127 |
-
x, bias, scale, residual, prob, False)
|
128 |
-
|
129 |
-
@torch.jit.script
|
130 |
-
def modulate_fused(x: torch.Tensor,
|
131 |
-
shift: torch.Tensor,
|
132 |
-
scale: torch.Tensor) -> torch.Tensor:
|
133 |
-
return modulate(x, shift, scale)
|
134 |
-
|
135 |
-
|
136 |
-
class Rotary(torch.nn.Module):
|
137 |
-
def __init__(self, dim, base=10_000):
|
138 |
-
super().__init__()
|
139 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
140 |
-
self.register_buffer('inv_freq', inv_freq)
|
141 |
-
self.seq_len_cached = None
|
142 |
-
self.cos_cached = None
|
143 |
-
self.sin_cached = None
|
144 |
-
|
145 |
-
def forward(self, x, seq_dim=1):
|
146 |
-
seq_len = x.shape[seq_dim]
|
147 |
-
if seq_len != self.seq_len_cached:
|
148 |
-
self.seq_len_cached = seq_len
|
149 |
-
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
|
150 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
|
151 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
152 |
-
# dims are: batch, seq_len, qkv, head, dim
|
153 |
-
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
|
154 |
-
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
|
155 |
-
# This makes the transformation on v an identity.
|
156 |
-
self.cos_cached[:,:,2,:,:].fill_(1.)
|
157 |
-
self.sin_cached[:,:,2,:,:].fill_(0.)
|
158 |
-
|
159 |
-
return self.cos_cached, self.sin_cached
|
160 |
-
|
161 |
-
|
162 |
-
def rotate_half(x):
|
163 |
-
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
164 |
-
return torch.cat((-x2, x1), dim=-1)
|
165 |
-
|
166 |
-
|
167 |
-
def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
|
168 |
-
return (qkv * cos) + (rotate_half(qkv) * sin)
|
169 |
-
|
170 |
-
# function overload
|
171 |
-
def modulate(x, shift, scale):
|
172 |
-
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
173 |
-
|
174 |
-
|
175 |
-
#################################################################################
|
176 |
-
# Layers #
|
177 |
-
#################################################################################
|
178 |
-
class LayerNorm(nn.Module):
|
179 |
-
def __init__(self, dim):
|
180 |
-
super().__init__()
|
181 |
-
self.weight = nn.Parameter(torch.ones([dim]))
|
182 |
-
self.dim = dim
|
183 |
-
def forward(self, x):
|
184 |
-
with torch.cuda.amp.autocast(enabled=False):
|
185 |
-
x = F.layer_norm(x.float(), [self.dim])
|
186 |
-
return x * self.weight[None,None,:]
|
187 |
-
|
188 |
-
|
189 |
-
def residual_linear(x, W, x_skip, residual_scale):
|
190 |
-
"""x_skip + residual_scale * W @ x"""
|
191 |
-
dim_out, dim_in = W.shape[0], W.shape[1]
|
192 |
-
return torch.addmm(
|
193 |
-
x_skip.view(-1, dim_out),
|
194 |
-
x.view(-1, dim_in),
|
195 |
-
W.T,
|
196 |
-
alpha=residual_scale).view(*x.shape[:-1], dim_out)
|
197 |
-
|
198 |
-
|
199 |
-
#################################################################################
|
200 |
-
# Embedding Layers for Timesteps and Class Labels #
|
201 |
-
#################################################################################
|
202 |
-
class TimestepEmbedder(nn.Module):
|
203 |
-
"""
|
204 |
-
Embeds scalar timesteps into vector representations.
|
205 |
-
"""
|
206 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
207 |
-
super().__init__()
|
208 |
-
self.mlp = nn.Sequential(
|
209 |
-
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
210 |
-
nn.SiLU(),
|
211 |
-
nn.Linear(hidden_size, hidden_size, bias=True))
|
212 |
-
self.frequency_embedding_size = frequency_embedding_size
|
213 |
-
|
214 |
-
@staticmethod
|
215 |
-
def timestep_embedding(t, dim, max_period=10000):
|
216 |
-
"""
|
217 |
-
Create sinusoidal timestep embeddings.
|
218 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
219 |
-
These may be fractional.
|
220 |
-
:param dim: the dimension of the output.
|
221 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
222 |
-
:return: an (N, D) Tensor of positional embeddings.
|
223 |
-
"""
|
224 |
-
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
225 |
-
half = dim // 2
|
226 |
-
freqs = torch.exp(
|
227 |
-
- math.log(max_period)
|
228 |
-
* torch.arange(start=0, end=half, dtype=torch.float32)
|
229 |
-
/ half).to(device=t.device)
|
230 |
-
args = t[:, None].float() * freqs[None]
|
231 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
232 |
-
if dim % 2:
|
233 |
-
embedding = torch.cat(
|
234 |
-
[embedding,
|
235 |
-
torch.zeros_like(embedding[:, :1])], dim=-1)
|
236 |
-
return embedding
|
237 |
-
|
238 |
-
def forward(self, t):
|
239 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
240 |
-
t_emb = self.mlp(t_freq)
|
241 |
-
return t_emb
|
242 |
-
|
243 |
-
|
244 |
-
class LabelEmbedder(nn.Module):
|
245 |
-
"""Embeds class labels into vector representations.
|
246 |
-
|
247 |
-
Also handles label dropout for classifier-free guidance.
|
248 |
-
"""
|
249 |
-
def __init__(self, num_classes, cond_size):
|
250 |
-
super().__init__()
|
251 |
-
self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
|
252 |
-
self.num_classes = num_classes
|
253 |
-
|
254 |
-
# TODO think of initializing with 0.02 std deviation like in original DiT paper
|
255 |
-
|
256 |
-
def forward(self, labels):
|
257 |
-
embeddings = self.embedding_table(labels)
|
258 |
-
return embeddings
|
259 |
-
|
260 |
-
|
261 |
-
#################################################################################
|
262 |
-
# Core Model #
|
263 |
-
#################################################################################
|
264 |
-
|
265 |
-
def regular_attention_multi_headed(qkv):
|
266 |
-
# Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
|
267 |
-
# where the 3 represents Q, K, V packed in that order
|
268 |
-
batch_size, seq_len, _, num_heads, head_dim = qkv.shape
|
269 |
-
# Separate Q, K, V from the packed qkv tensor
|
270 |
-
# [batch_size, seq_len, num_heads, head_dim]
|
271 |
-
q = qkv[:, :, 0, :, :]
|
272 |
-
k = qkv[:, :, 1, :, :]
|
273 |
-
v = qkv[:, :, 2, :, :]
|
274 |
-
|
275 |
-
# Transpose and reshape Q and K for batched matrix multiplication:
|
276 |
-
# [batch_size, num_heads, seq_len, head_dim]
|
277 |
-
q = q.transpose(1, 2)
|
278 |
-
k = k.transpose(1, 2)
|
279 |
-
v = v.transpose(1, 2)
|
280 |
-
|
281 |
-
# Compute scaled dot-product attention
|
282 |
-
# [batch_size, num_heads, seq_len, seq_len]
|
283 |
-
attention_scores = torch.matmul(
|
284 |
-
q, k.transpose(-2, -1)) / math.sqrt(head_dim)
|
285 |
-
|
286 |
-
# Apply softmax to calculate the attention weights
|
287 |
-
attention_probs = F.softmax(attention_scores, dim=-1)
|
288 |
-
|
289 |
-
# [batch_size, num_heads, seq_len, head_dim]
|
290 |
-
attention_output = torch.matmul(attention_probs, v)
|
291 |
-
|
292 |
-
# [batch_size, seq_len, num_heads, head_dim]
|
293 |
-
attention_output = attention_output.transpose(1, 2)
|
294 |
-
return einops.rearrange(attention_output,
|
295 |
-
'b s h d -> b s (h d)')
|
296 |
-
|
297 |
-
|
298 |
-
class DDiTBlock(nn.Module):
|
299 |
-
def __init__(self, n, block_size, dim, n_heads, cond_dim, causal=False,
|
300 |
-
mlp_ratio=4, dropout=0.1, adaln=True, attn_backend='sdpa'):
|
301 |
-
super().__init__()
|
302 |
-
self.n = n
|
303 |
-
self.block_size = block_size
|
304 |
-
self.n_heads = n_heads
|
305 |
-
self.attn_backend = attn_backend
|
306 |
-
self.kv_cache = None
|
307 |
-
self.causal = causal
|
308 |
-
|
309 |
-
self.norm1 = LayerNorm(dim)
|
310 |
-
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
|
311 |
-
self.attn_out = nn.Linear(dim, dim, bias=False)
|
312 |
-
self.dropout1 = nn.Dropout(dropout)
|
313 |
-
|
314 |
-
self.norm2 = LayerNorm(dim)
|
315 |
-
self.mlp = nn.Sequential(
|
316 |
-
nn.Linear(dim, mlp_ratio * dim, bias=True),
|
317 |
-
nn.GELU(approximate='tanh'),
|
318 |
-
nn.Linear(mlp_ratio * dim, dim, bias=True))
|
319 |
-
self.dropout2 = nn.Dropout(dropout)
|
320 |
-
self.dropout = dropout
|
321 |
-
self.adaln = adaln
|
322 |
-
if self.adaln:
|
323 |
-
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
|
324 |
-
self.adaLN_modulation.weight.data.zero_()
|
325 |
-
self.adaLN_modulation.bias.data.zero_()
|
326 |
-
|
327 |
-
def _get_bias_dropout_scale(self):
|
328 |
-
if self.training:
|
329 |
-
return bias_dropout_add_scale_fused_train
|
330 |
-
else:
|
331 |
-
return bias_dropout_add_scale_fused_inference
|
332 |
-
|
333 |
-
def get_qkv(self, x, rotary_cos_sin, store_kv=False):
|
334 |
-
# compute qkv (potentially use cache)
|
335 |
-
if self.kv_cache is not None:
|
336 |
-
new_qkv = self.attn_qkv(x[:, -self.block_size:])
|
337 |
-
qkv = torch.cat((self.kv_cache, new_qkv), dim=1)
|
338 |
-
else:
|
339 |
-
qkv = self.attn_qkv(x)
|
340 |
-
# store kv cache in a sliding window (can't exceed context len)
|
341 |
-
if store_kv:
|
342 |
-
self.kv_cache = qkv[:, -(self.n-self.block_size):]
|
343 |
-
|
344 |
-
qkv = einops.rearrange(
|
345 |
-
qkv,
|
346 |
-
'b s (three h d) -> b s three h d',
|
347 |
-
three=3,
|
348 |
-
h=self.n_heads)
|
349 |
-
with torch.cuda.amp.autocast(enabled=False):
|
350 |
-
cos, sin = rotary_cos_sin
|
351 |
-
qkv = apply_rotary_pos_emb_torchscript(
|
352 |
-
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
|
353 |
-
return qkv
|
354 |
-
|
355 |
-
def cross_attn(self, x, qkv, mask=None):
|
356 |
-
scale = qkv.shape[-1]
|
357 |
-
qkv = qkv.transpose(1, 3)
|
358 |
-
mask = mask.bool() if mask is not None else None
|
359 |
-
x = F.scaled_dot_product_attention(
|
360 |
-
query=qkv[:, :, 0],
|
361 |
-
key=qkv[:, :, 1],
|
362 |
-
value=qkv[:, :, 2],
|
363 |
-
attn_mask=mask,
|
364 |
-
is_causal=self.causal,
|
365 |
-
scale=1 / math.sqrt(scale))
|
366 |
-
x = x.transpose(1, 2)
|
367 |
-
x = einops.rearrange(x, 'b s h d -> b s (h d)')
|
368 |
-
return x
|
369 |
-
|
370 |
-
def cross_attn_flex(self, qkv, mask=None):
|
371 |
-
qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads)
|
372 |
-
x = fused_flex_attention(
|
373 |
-
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask)
|
374 |
-
x = einops.rearrange(x, 'b h s d -> b s (h d)')
|
375 |
-
return x
|
376 |
-
|
377 |
-
def forward(self, x, rotary_cos_sin, c, mask=None,
|
378 |
-
sample_mode=False, store_kv=False):
|
379 |
-
bias_dropout_scale_fn = self._get_bias_dropout_scale()
|
380 |
-
|
381 |
-
if self.adaln:
|
382 |
-
(shift_msa, scale_msa, gate_msa, shift_mlp,
|
383 |
-
scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
|
384 |
-
|
385 |
-
# attention operation
|
386 |
-
x_skip = x
|
387 |
-
if self.adaln:
|
388 |
-
x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
|
389 |
-
else:
|
390 |
-
x = self.norm1(x)
|
391 |
-
|
392 |
-
# get qkvs
|
393 |
-
if mask is not None and not sample_mode:
|
394 |
-
n = mask.shape[-1] // 2
|
395 |
-
qkv_x = self.get_qkv(x[:,:n], rotary_cos_sin)
|
396 |
-
qkv_x0 = self.get_qkv(x[:,n:], rotary_cos_sin)
|
397 |
-
qkv = torch.cat((qkv_x, qkv_x0), dim=1)
|
398 |
-
else:
|
399 |
-
qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)
|
400 |
-
|
401 |
-
if self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
|
402 |
-
x = self.cross_attn_flex(qkv, mask=mask)
|
403 |
-
elif self.attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
|
404 |
-
x = self.cross_attn(x, qkv, mask=mask)
|
405 |
-
else:
|
406 |
-
raise ValueError('Unknown attention backend')
|
407 |
-
|
408 |
-
# mlp operation
|
409 |
-
if self.adaln:
|
410 |
-
x = bias_dropout_scale_fn(self.attn_out(x),
|
411 |
-
None,
|
412 |
-
gate_msa,
|
413 |
-
x_skip,
|
414 |
-
self.dropout)
|
415 |
-
x = bias_dropout_scale_fn(
|
416 |
-
self.mlp(modulate_fused(
|
417 |
-
self.norm2(x), shift_mlp, scale_mlp)),
|
418 |
-
None, gate_mlp, x, self.dropout)
|
419 |
-
else:
|
420 |
-
x = bias_dropout_scale_fn(self.attn_out(x),
|
421 |
-
None, torch.ones_like(x), x_skip, self.dropout)
|
422 |
-
x = bias_dropout_scale_fn(
|
423 |
-
self.mlp(self.norm2(x)),
|
424 |
-
None, torch.ones_like(x), x, self.dropout)
|
425 |
-
return x
|
426 |
-
|
427 |
-
|
428 |
-
class EmbeddingLayer(nn.Module):
|
429 |
-
def __init__(self, dim, vocab_dim):
|
430 |
-
super().__init__()
|
431 |
-
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
|
432 |
-
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
|
433 |
-
|
434 |
-
def forward(self, x):
|
435 |
-
return self.embedding[x]
|
436 |
-
|
437 |
-
|
438 |
-
class DDitFinalLayer(nn.Module):
|
439 |
-
def __init__(self, hidden_size, out_channels, cond_dim, adaln=True):
|
440 |
-
super().__init__()
|
441 |
-
self.norm_final = LayerNorm(hidden_size)
|
442 |
-
self.linear = nn.Linear(hidden_size, out_channels)
|
443 |
-
self.linear.weight.data.zero_()
|
444 |
-
self.linear.bias.data.zero_()
|
445 |
-
|
446 |
-
self.adaln = adaln
|
447 |
-
if self.adaln:
|
448 |
-
self.adaLN_modulation = nn.Linear(cond_dim,
|
449 |
-
2 * hidden_size,
|
450 |
-
bias=True)
|
451 |
-
self.adaLN_modulation.weight.data.zero_()
|
452 |
-
self.adaLN_modulation.bias.data.zero_()
|
453 |
-
|
454 |
-
|
455 |
-
def forward(self, x, c):
|
456 |
-
if self.adaln:
|
457 |
-
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
|
458 |
-
x = modulate_fused(self.norm_final(x), shift, scale)
|
459 |
-
else:
|
460 |
-
x = self.norm_final(x)
|
461 |
-
x = self.linear(x)
|
462 |
-
return x
|
463 |
-
|
464 |
-
|
465 |
-
class DITBackbone(nn.Module):
|
466 |
-
def __init__(
|
467 |
-
self,
|
468 |
-
config: BD3LMConfig):
|
469 |
-
super().__init__()
|
470 |
-
|
471 |
-
self.config = config
|
472 |
-
self.cross_attn = config.cross_attn
|
473 |
-
self.block_size = config.block_size
|
474 |
-
self.vocab_size = config.vocab_size
|
475 |
-
self.n = config.model_length
|
476 |
-
|
477 |
-
self.vocab_embed = EmbeddingLayer(
|
478 |
-
config.hidden_dim,
|
479 |
-
config.vocab_size)
|
480 |
-
self.adaln = config.adaln
|
481 |
-
if self.adaln:
|
482 |
-
self.sigma_map = TimestepEmbedder(
|
483 |
-
config.cond_dim)
|
484 |
-
self.rotary_emb = Rotary(
|
485 |
-
config.hidden_dim // config.n_heads)
|
486 |
-
|
487 |
-
blocks = []
|
488 |
-
for _ in range(config.n_blocks):
|
489 |
-
blocks.append(DDiTBlock(self.n,
|
490 |
-
self.block_size,
|
491 |
-
config.hidden_dim,
|
492 |
-
config.n_heads,
|
493 |
-
config.cond_dim,
|
494 |
-
causal=config.causal,
|
495 |
-
dropout=config.dropout,
|
496 |
-
adaln=config.adaln,
|
497 |
-
attn_backend=config.attn_backend,))
|
498 |
-
self.blocks = nn.ModuleList(blocks)
|
499 |
-
|
500 |
-
self.output_layer = DDitFinalLayer(
|
501 |
-
config.hidden_dim,
|
502 |
-
config.vocab_size,
|
503 |
-
config.cond_dim,
|
504 |
-
adaln=config.adaln)
|
505 |
-
if self.cross_attn:
|
506 |
-
self.gen_mask(config.model_length, self.block_size, attn_backend=config.attn_backend)
|
507 |
-
self.precision = torch.float32
|
508 |
-
|
509 |
-
def _get_bias_dropout_scale(self):
|
510 |
-
if self.training:
|
511 |
-
return bias_dropout_add_scale_fused_train
|
512 |
-
else:
|
513 |
-
return bias_dropout_add_scale_fused_inference
|
514 |
-
|
515 |
-
def gen_mask(self, seqlen, block_size, attn_backend='sdpa'):
|
516 |
-
"""Genererates attention mask"""
|
517 |
-
if attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
|
518 |
-
self.mask = create_block_mask(
|
519 |
-
partial(block_diff_mask, block_size=block_size, n=seqlen),
|
520 |
-
B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
|
521 |
-
elif attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
|
522 |
-
self.mask = block_diff_mask(
|
523 |
-
b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None],
|
524 |
-
kv_idx=torch.arange(seqlen*2)[None, :], block_size=block_size, n=seqlen)
|
525 |
-
else:
|
526 |
-
raise ValueError('Unknown attention backend')
|
527 |
-
|
528 |
-
def forward(self, indices, sigma, sample_mode=False,
|
529 |
-
store_kv=False, output_hidden_states=False):
|
530 |
-
if not self.config.time_conditioning and self.adaln:
|
531 |
-
sigma = torch.zeros_like(sigma)
|
532 |
-
all_hidden_states = []
|
533 |
-
x = self.vocab_embed(indices)
|
534 |
-
if output_hidden_states:
|
535 |
-
all_hidden_states.append(x)
|
536 |
-
c = None
|
537 |
-
if self.adaln:
|
538 |
-
c = F.silu(self.sigma_map(sigma))
|
539 |
-
if self.cross_attn:
|
540 |
-
n = self.mask.shape[-1] // 2
|
541 |
-
rotary_cos_sin = self.rotary_emb(x[:, :n])
|
542 |
-
mask = self.mask.to(x.device)
|
543 |
-
# use block-causal mask only during sampling
|
544 |
-
if sample_mode:
|
545 |
-
mask = mask[
|
546 |
-
n:n+x.shape[1], n:n+x.shape[1]]
|
547 |
-
else:
|
548 |
-
mask = None
|
549 |
-
rotary_cos_sin = self.rotary_emb(x)
|
550 |
-
|
551 |
-
with torch.cuda.amp.autocast(dtype=self.precision):
|
552 |
-
for i in range(len(self.blocks)):
|
553 |
-
x = self.blocks[i](x,
|
554 |
-
rotary_cos_sin,
|
555 |
-
c,
|
556 |
-
mask=mask,
|
557 |
-
sample_mode=sample_mode,
|
558 |
-
store_kv=store_kv)
|
559 |
-
if output_hidden_states:
|
560 |
-
all_hidden_states.append(x)
|
561 |
-
logits = self.output_layer(x, c)
|
562 |
-
if self.cross_attn and not sample_mode:
|
563 |
-
logits = logits[:, :n]
|
564 |
-
all_hidden_states = [hidden_states[:, :n] for hidden_states in all_hidden_states]
|
565 |
-
return logits, all_hidden_states
|
566 |
-
|
567 |
-
class BD3LM(transformers.PreTrainedModel):
|
568 |
-
"""HF-compatible model."""
|
569 |
-
config_class = BD3LMConfig
|
570 |
-
base_model_prefix = "bd3lm"
|
571 |
-
|
572 |
-
def __init__(
|
573 |
-
self,
|
574 |
-
config: BD3LMConfig):
|
575 |
-
super().__init__(config)
|
576 |
-
self.config = config
|
577 |
-
self.backbone = DITBackbone(config)
|
578 |
-
if config.var_min:
|
579 |
-
self.register_buffer(
|
580 |
-
'sampling_eps_min',
|
581 |
-
torch.tensor(config.sampling_eps_min))
|
582 |
-
self.register_buffer(
|
583 |
-
'sampling_eps_max',
|
584 |
-
torch.tensor(config.sampling_eps_max))
|
585 |
-
|
586 |
-
def reset_kv_cache(self):
|
587 |
-
for block in self.backbone.blocks:
|
588 |
-
block.kv_cache = None
|
589 |
-
|
590 |
-
def forward(
|
591 |
-
self,
|
592 |
-
input_ids: torch.LongTensor = None,
|
593 |
-
timesteps: torch.FloatTensor = None,
|
594 |
-
sample_mode: typing.Optional[bool] = None,
|
595 |
-
store_kv: typing.Optional[bool] = None,
|
596 |
-
output_hidden_states: typing.Optional[bool] = None,
|
597 |
-
return_dict: typing.Optional[bool] = None,
|
598 |
-
) -> typing.Union[
|
599 |
-
torch.Tensor, typing.Tuple,
|
600 |
-
modeling_outputs.MaskedLMOutput]:
|
601 |
-
"""HF-compatible forward method."""
|
602 |
-
if sample_mode:
|
603 |
-
assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA'
|
604 |
-
|
605 |
-
output_hidden_states = (
|
606 |
-
output_hidden_states
|
607 |
-
if output_hidden_states is not None
|
608 |
-
else self.config.output_hidden_states
|
609 |
-
)
|
610 |
-
return_dict = return_dict \
|
611 |
-
if return_dict is not None \
|
612 |
-
else self.config.use_return_dict
|
613 |
-
|
614 |
-
logits, all_hidden_states = self.backbone(
|
615 |
-
indices=input_ids,
|
616 |
-
sigma=timesteps,
|
617 |
-
sample_mode=sample_mode,
|
618 |
-
store_kv=store_kv,
|
619 |
-
output_hidden_states=output_hidden_states,
|
620 |
-
)
|
621 |
-
if return_dict:
|
622 |
-
return modeling_outputs.MaskedLMOutput(
|
623 |
-
logits=logits,
|
624 |
-
hidden_states=all_hidden_states if output_hidden_states else None,
|
625 |
-
loss=None
|
626 |
-
)
|
627 |
-
elif output_hidden_states:
|
628 |
-
return logits, all_hidden_states
|
629 |
-
else:
|
630 |
-
return logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|