monsoon-nlp commited on
Commit
476c3bd
·
verified ·
1 Parent(s): bdc39fe

Delete modeling_bd3lm.py

Browse files
Files changed (1) hide show
  1. modeling_bd3lm.py +0 -630
modeling_bd3lm.py DELETED
@@ -1,630 +0,0 @@
1
- """BD3LM model for Hugging Face.
2
-
3
- """
4
- import math
5
- import typing
6
-
7
- import einops
8
- from functools import partial
9
- import torch
10
- import torch.nn as nn
11
- import torch.nn.functional as F
12
- import transformers
13
- from transformers import modeling_outputs
14
- try:
15
- from torch.nn.attention.flex_attention import flex_attention, create_block_mask
16
- FLEX_ATTN_AVAILABLE = True
17
- except:
18
- FLEX_ATTN_AVAILABLE = False
19
-
20
- from .configuration_bd3lm import BD3LMConfig
21
-
22
- # Flags required to enable jit fusion kernels
23
- torch._C._jit_set_profiling_mode(False)
24
- torch._C._jit_set_profiling_executor(False)
25
- torch._C._jit_override_can_fuse_on_cpu(True)
26
- torch._C._jit_override_can_fuse_on_gpu(True)
27
-
28
- def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
29
- """
30
- Constructs the specialized block diffusion attention mask for training
31
- composed of three masks:
32
- - **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
33
- - **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
34
- - **Block Causal Mask (M_BC)**: Attention to update x0
35
-
36
- Args:
37
- b, h: Batch and head indices (ignored for mask logic).
38
- q_idx, kv_idx: Query and Key indices.
39
- seq_len: Total sequence length.
40
- block_size: Defines the block structure.
41
-
42
- Returns:
43
- A boolean attention mask.
44
- """
45
-
46
- # Indicate whether token belongs to xt or x0
47
- x0_flag_q = (q_idx >= n)
48
- x0_flag_kv = (kv_idx >= n)
49
-
50
- # Compute block indices
51
- block_q = torch.where(x0_flag_q == 1,
52
- (q_idx - n) // block_size,
53
- q_idx // block_size)
54
- block_kv = torch.where(x0_flag_kv == 1,
55
- (kv_idx - n) // block_size,
56
- kv_idx // block_size)
57
-
58
- # **1. Block Diagonal Mask (M_BD) **
59
- block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
60
-
61
- # **2. Offset Block-Causal Mask (M_OBC) **
62
- offset_block_causal = (
63
- (block_q > block_kv)
64
- & (x0_flag_kv == 1)
65
- & (x0_flag_q == 0)
66
- )
67
-
68
- # **3. Block-Causal Mask (M_BC) **
69
- block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
70
-
71
- # **4. Combine Masks **
72
- return block_diagonal | offset_block_causal | block_causal
73
-
74
- @torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
75
- def fused_flex_attention(q, k, v, mask=None):
76
- return flex_attention(q, k, v, block_mask=mask)
77
-
78
- def bias_dropout_add_scale(
79
- x: torch.Tensor,
80
- bias: typing.Optional[torch.Tensor],
81
- scale: torch.Tensor,
82
- residual: typing.Optional[torch.Tensor],
83
- prob: float,
84
- training: bool) -> torch.Tensor:
85
- if bias is not None:
86
- out = scale * F.dropout(x + bias, p=prob, training=training)
87
- else:
88
- out = scale * F.dropout(x, p=prob, training=training)
89
-
90
- if residual is not None:
91
- out = residual + out
92
- return out
93
-
94
-
95
- def get_bias_dropout_add_scale(training):
96
- def _bias_dropout_add(x, bias, scale, residual, prob):
97
- return bias_dropout_add_scale(
98
- x, bias, scale, residual, prob, training)
99
-
100
- return _bias_dropout_add
101
-
102
-
103
- # function overload
104
- def modulate(x: torch.Tensor,
105
- shift: torch.Tensor,
106
- scale: torch.Tensor) -> torch.Tensor:
107
- return x * (1 + scale) + shift
108
-
109
- @torch.jit.script
110
- def bias_dropout_add_scale_fused_train(
111
- x: torch.Tensor,
112
- bias: typing.Optional[torch.Tensor],
113
- scale: torch.Tensor,
114
- residual: typing.Optional[torch.Tensor],
115
- prob: float) -> torch.Tensor:
116
- return bias_dropout_add_scale(
117
- x, bias, scale, residual, prob, True)
118
-
119
- @torch.jit.script
120
- def bias_dropout_add_scale_fused_inference(
121
- x: torch.Tensor,
122
- bias: typing.Optional[torch.Tensor],
123
- scale: torch.Tensor,
124
- residual: typing.Optional[torch.Tensor],
125
- prob: float) -> torch.Tensor:
126
- return bias_dropout_add_scale(
127
- x, bias, scale, residual, prob, False)
128
-
129
- @torch.jit.script
130
- def modulate_fused(x: torch.Tensor,
131
- shift: torch.Tensor,
132
- scale: torch.Tensor) -> torch.Tensor:
133
- return modulate(x, shift, scale)
134
-
135
-
136
- class Rotary(torch.nn.Module):
137
- def __init__(self, dim, base=10_000):
138
- super().__init__()
139
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
140
- self.register_buffer('inv_freq', inv_freq)
141
- self.seq_len_cached = None
142
- self.cos_cached = None
143
- self.sin_cached = None
144
-
145
- def forward(self, x, seq_dim=1):
146
- seq_len = x.shape[seq_dim]
147
- if seq_len != self.seq_len_cached:
148
- self.seq_len_cached = seq_len
149
- t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
150
- freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
151
- emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
152
- # dims are: batch, seq_len, qkv, head, dim
153
- self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
154
- self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
155
- # This makes the transformation on v an identity.
156
- self.cos_cached[:,:,2,:,:].fill_(1.)
157
- self.sin_cached[:,:,2,:,:].fill_(0.)
158
-
159
- return self.cos_cached, self.sin_cached
160
-
161
-
162
- def rotate_half(x):
163
- x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
164
- return torch.cat((-x2, x1), dim=-1)
165
-
166
-
167
- def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
168
- return (qkv * cos) + (rotate_half(qkv) * sin)
169
-
170
- # function overload
171
- def modulate(x, shift, scale):
172
- return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
173
-
174
-
175
- #################################################################################
176
- # Layers #
177
- #################################################################################
178
- class LayerNorm(nn.Module):
179
- def __init__(self, dim):
180
- super().__init__()
181
- self.weight = nn.Parameter(torch.ones([dim]))
182
- self.dim = dim
183
- def forward(self, x):
184
- with torch.cuda.amp.autocast(enabled=False):
185
- x = F.layer_norm(x.float(), [self.dim])
186
- return x * self.weight[None,None,:]
187
-
188
-
189
- def residual_linear(x, W, x_skip, residual_scale):
190
- """x_skip + residual_scale * W @ x"""
191
- dim_out, dim_in = W.shape[0], W.shape[1]
192
- return torch.addmm(
193
- x_skip.view(-1, dim_out),
194
- x.view(-1, dim_in),
195
- W.T,
196
- alpha=residual_scale).view(*x.shape[:-1], dim_out)
197
-
198
-
199
- #################################################################################
200
- # Embedding Layers for Timesteps and Class Labels #
201
- #################################################################################
202
- class TimestepEmbedder(nn.Module):
203
- """
204
- Embeds scalar timesteps into vector representations.
205
- """
206
- def __init__(self, hidden_size, frequency_embedding_size=256):
207
- super().__init__()
208
- self.mlp = nn.Sequential(
209
- nn.Linear(frequency_embedding_size, hidden_size, bias=True),
210
- nn.SiLU(),
211
- nn.Linear(hidden_size, hidden_size, bias=True))
212
- self.frequency_embedding_size = frequency_embedding_size
213
-
214
- @staticmethod
215
- def timestep_embedding(t, dim, max_period=10000):
216
- """
217
- Create sinusoidal timestep embeddings.
218
- :param t: a 1-D Tensor of N indices, one per batch element.
219
- These may be fractional.
220
- :param dim: the dimension of the output.
221
- :param max_period: controls the minimum frequency of the embeddings.
222
- :return: an (N, D) Tensor of positional embeddings.
223
- """
224
- # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
225
- half = dim // 2
226
- freqs = torch.exp(
227
- - math.log(max_period)
228
- * torch.arange(start=0, end=half, dtype=torch.float32)
229
- / half).to(device=t.device)
230
- args = t[:, None].float() * freqs[None]
231
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
232
- if dim % 2:
233
- embedding = torch.cat(
234
- [embedding,
235
- torch.zeros_like(embedding[:, :1])], dim=-1)
236
- return embedding
237
-
238
- def forward(self, t):
239
- t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
240
- t_emb = self.mlp(t_freq)
241
- return t_emb
242
-
243
-
244
- class LabelEmbedder(nn.Module):
245
- """Embeds class labels into vector representations.
246
-
247
- Also handles label dropout for classifier-free guidance.
248
- """
249
- def __init__(self, num_classes, cond_size):
250
- super().__init__()
251
- self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
252
- self.num_classes = num_classes
253
-
254
- # TODO think of initializing with 0.02 std deviation like in original DiT paper
255
-
256
- def forward(self, labels):
257
- embeddings = self.embedding_table(labels)
258
- return embeddings
259
-
260
-
261
- #################################################################################
262
- # Core Model #
263
- #################################################################################
264
-
265
- def regular_attention_multi_headed(qkv):
266
- # Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
267
- # where the 3 represents Q, K, V packed in that order
268
- batch_size, seq_len, _, num_heads, head_dim = qkv.shape
269
- # Separate Q, K, V from the packed qkv tensor
270
- # [batch_size, seq_len, num_heads, head_dim]
271
- q = qkv[:, :, 0, :, :]
272
- k = qkv[:, :, 1, :, :]
273
- v = qkv[:, :, 2, :, :]
274
-
275
- # Transpose and reshape Q and K for batched matrix multiplication:
276
- # [batch_size, num_heads, seq_len, head_dim]
277
- q = q.transpose(1, 2)
278
- k = k.transpose(1, 2)
279
- v = v.transpose(1, 2)
280
-
281
- # Compute scaled dot-product attention
282
- # [batch_size, num_heads, seq_len, seq_len]
283
- attention_scores = torch.matmul(
284
- q, k.transpose(-2, -1)) / math.sqrt(head_dim)
285
-
286
- # Apply softmax to calculate the attention weights
287
- attention_probs = F.softmax(attention_scores, dim=-1)
288
-
289
- # [batch_size, num_heads, seq_len, head_dim]
290
- attention_output = torch.matmul(attention_probs, v)
291
-
292
- # [batch_size, seq_len, num_heads, head_dim]
293
- attention_output = attention_output.transpose(1, 2)
294
- return einops.rearrange(attention_output,
295
- 'b s h d -> b s (h d)')
296
-
297
-
298
- class DDiTBlock(nn.Module):
299
- def __init__(self, n, block_size, dim, n_heads, cond_dim, causal=False,
300
- mlp_ratio=4, dropout=0.1, adaln=True, attn_backend='sdpa'):
301
- super().__init__()
302
- self.n = n
303
- self.block_size = block_size
304
- self.n_heads = n_heads
305
- self.attn_backend = attn_backend
306
- self.kv_cache = None
307
- self.causal = causal
308
-
309
- self.norm1 = LayerNorm(dim)
310
- self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
311
- self.attn_out = nn.Linear(dim, dim, bias=False)
312
- self.dropout1 = nn.Dropout(dropout)
313
-
314
- self.norm2 = LayerNorm(dim)
315
- self.mlp = nn.Sequential(
316
- nn.Linear(dim, mlp_ratio * dim, bias=True),
317
- nn.GELU(approximate='tanh'),
318
- nn.Linear(mlp_ratio * dim, dim, bias=True))
319
- self.dropout2 = nn.Dropout(dropout)
320
- self.dropout = dropout
321
- self.adaln = adaln
322
- if self.adaln:
323
- self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
324
- self.adaLN_modulation.weight.data.zero_()
325
- self.adaLN_modulation.bias.data.zero_()
326
-
327
- def _get_bias_dropout_scale(self):
328
- if self.training:
329
- return bias_dropout_add_scale_fused_train
330
- else:
331
- return bias_dropout_add_scale_fused_inference
332
-
333
- def get_qkv(self, x, rotary_cos_sin, store_kv=False):
334
- # compute qkv (potentially use cache)
335
- if self.kv_cache is not None:
336
- new_qkv = self.attn_qkv(x[:, -self.block_size:])
337
- qkv = torch.cat((self.kv_cache, new_qkv), dim=1)
338
- else:
339
- qkv = self.attn_qkv(x)
340
- # store kv cache in a sliding window (can't exceed context len)
341
- if store_kv:
342
- self.kv_cache = qkv[:, -(self.n-self.block_size):]
343
-
344
- qkv = einops.rearrange(
345
- qkv,
346
- 'b s (three h d) -> b s three h d',
347
- three=3,
348
- h=self.n_heads)
349
- with torch.cuda.amp.autocast(enabled=False):
350
- cos, sin = rotary_cos_sin
351
- qkv = apply_rotary_pos_emb_torchscript(
352
- qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
353
- return qkv
354
-
355
- def cross_attn(self, x, qkv, mask=None):
356
- scale = qkv.shape[-1]
357
- qkv = qkv.transpose(1, 3)
358
- mask = mask.bool() if mask is not None else None
359
- x = F.scaled_dot_product_attention(
360
- query=qkv[:, :, 0],
361
- key=qkv[:, :, 1],
362
- value=qkv[:, :, 2],
363
- attn_mask=mask,
364
- is_causal=self.causal,
365
- scale=1 / math.sqrt(scale))
366
- x = x.transpose(1, 2)
367
- x = einops.rearrange(x, 'b s h d -> b s (h d)')
368
- return x
369
-
370
- def cross_attn_flex(self, qkv, mask=None):
371
- qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads)
372
- x = fused_flex_attention(
373
- qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask)
374
- x = einops.rearrange(x, 'b h s d -> b s (h d)')
375
- return x
376
-
377
- def forward(self, x, rotary_cos_sin, c, mask=None,
378
- sample_mode=False, store_kv=False):
379
- bias_dropout_scale_fn = self._get_bias_dropout_scale()
380
-
381
- if self.adaln:
382
- (shift_msa, scale_msa, gate_msa, shift_mlp,
383
- scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
384
-
385
- # attention operation
386
- x_skip = x
387
- if self.adaln:
388
- x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
389
- else:
390
- x = self.norm1(x)
391
-
392
- # get qkvs
393
- if mask is not None and not sample_mode:
394
- n = mask.shape[-1] // 2
395
- qkv_x = self.get_qkv(x[:,:n], rotary_cos_sin)
396
- qkv_x0 = self.get_qkv(x[:,n:], rotary_cos_sin)
397
- qkv = torch.cat((qkv_x, qkv_x0), dim=1)
398
- else:
399
- qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)
400
-
401
- if self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
402
- x = self.cross_attn_flex(qkv, mask=mask)
403
- elif self.attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
404
- x = self.cross_attn(x, qkv, mask=mask)
405
- else:
406
- raise ValueError('Unknown attention backend')
407
-
408
- # mlp operation
409
- if self.adaln:
410
- x = bias_dropout_scale_fn(self.attn_out(x),
411
- None,
412
- gate_msa,
413
- x_skip,
414
- self.dropout)
415
- x = bias_dropout_scale_fn(
416
- self.mlp(modulate_fused(
417
- self.norm2(x), shift_mlp, scale_mlp)),
418
- None, gate_mlp, x, self.dropout)
419
- else:
420
- x = bias_dropout_scale_fn(self.attn_out(x),
421
- None, torch.ones_like(x), x_skip, self.dropout)
422
- x = bias_dropout_scale_fn(
423
- self.mlp(self.norm2(x)),
424
- None, torch.ones_like(x), x, self.dropout)
425
- return x
426
-
427
-
428
- class EmbeddingLayer(nn.Module):
429
- def __init__(self, dim, vocab_dim):
430
- super().__init__()
431
- self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
432
- torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
433
-
434
- def forward(self, x):
435
- return self.embedding[x]
436
-
437
-
438
- class DDitFinalLayer(nn.Module):
439
- def __init__(self, hidden_size, out_channels, cond_dim, adaln=True):
440
- super().__init__()
441
- self.norm_final = LayerNorm(hidden_size)
442
- self.linear = nn.Linear(hidden_size, out_channels)
443
- self.linear.weight.data.zero_()
444
- self.linear.bias.data.zero_()
445
-
446
- self.adaln = adaln
447
- if self.adaln:
448
- self.adaLN_modulation = nn.Linear(cond_dim,
449
- 2 * hidden_size,
450
- bias=True)
451
- self.adaLN_modulation.weight.data.zero_()
452
- self.adaLN_modulation.bias.data.zero_()
453
-
454
-
455
- def forward(self, x, c):
456
- if self.adaln:
457
- shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
458
- x = modulate_fused(self.norm_final(x), shift, scale)
459
- else:
460
- x = self.norm_final(x)
461
- x = self.linear(x)
462
- return x
463
-
464
-
465
- class DITBackbone(nn.Module):
466
- def __init__(
467
- self,
468
- config: BD3LMConfig):
469
- super().__init__()
470
-
471
- self.config = config
472
- self.cross_attn = config.cross_attn
473
- self.block_size = config.block_size
474
- self.vocab_size = config.vocab_size
475
- self.n = config.model_length
476
-
477
- self.vocab_embed = EmbeddingLayer(
478
- config.hidden_dim,
479
- config.vocab_size)
480
- self.adaln = config.adaln
481
- if self.adaln:
482
- self.sigma_map = TimestepEmbedder(
483
- config.cond_dim)
484
- self.rotary_emb = Rotary(
485
- config.hidden_dim // config.n_heads)
486
-
487
- blocks = []
488
- for _ in range(config.n_blocks):
489
- blocks.append(DDiTBlock(self.n,
490
- self.block_size,
491
- config.hidden_dim,
492
- config.n_heads,
493
- config.cond_dim,
494
- causal=config.causal,
495
- dropout=config.dropout,
496
- adaln=config.adaln,
497
- attn_backend=config.attn_backend,))
498
- self.blocks = nn.ModuleList(blocks)
499
-
500
- self.output_layer = DDitFinalLayer(
501
- config.hidden_dim,
502
- config.vocab_size,
503
- config.cond_dim,
504
- adaln=config.adaln)
505
- if self.cross_attn:
506
- self.gen_mask(config.model_length, self.block_size, attn_backend=config.attn_backend)
507
- self.precision = torch.float32
508
-
509
- def _get_bias_dropout_scale(self):
510
- if self.training:
511
- return bias_dropout_add_scale_fused_train
512
- else:
513
- return bias_dropout_add_scale_fused_inference
514
-
515
- def gen_mask(self, seqlen, block_size, attn_backend='sdpa'):
516
- """Genererates attention mask"""
517
- if attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
518
- self.mask = create_block_mask(
519
- partial(block_diff_mask, block_size=block_size, n=seqlen),
520
- B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
521
- elif attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
522
- self.mask = block_diff_mask(
523
- b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None],
524
- kv_idx=torch.arange(seqlen*2)[None, :], block_size=block_size, n=seqlen)
525
- else:
526
- raise ValueError('Unknown attention backend')
527
-
528
- def forward(self, indices, sigma, sample_mode=False,
529
- store_kv=False, output_hidden_states=False):
530
- if not self.config.time_conditioning and self.adaln:
531
- sigma = torch.zeros_like(sigma)
532
- all_hidden_states = []
533
- x = self.vocab_embed(indices)
534
- if output_hidden_states:
535
- all_hidden_states.append(x)
536
- c = None
537
- if self.adaln:
538
- c = F.silu(self.sigma_map(sigma))
539
- if self.cross_attn:
540
- n = self.mask.shape[-1] // 2
541
- rotary_cos_sin = self.rotary_emb(x[:, :n])
542
- mask = self.mask.to(x.device)
543
- # use block-causal mask only during sampling
544
- if sample_mode:
545
- mask = mask[
546
- n:n+x.shape[1], n:n+x.shape[1]]
547
- else:
548
- mask = None
549
- rotary_cos_sin = self.rotary_emb(x)
550
-
551
- with torch.cuda.amp.autocast(dtype=self.precision):
552
- for i in range(len(self.blocks)):
553
- x = self.blocks[i](x,
554
- rotary_cos_sin,
555
- c,
556
- mask=mask,
557
- sample_mode=sample_mode,
558
- store_kv=store_kv)
559
- if output_hidden_states:
560
- all_hidden_states.append(x)
561
- logits = self.output_layer(x, c)
562
- if self.cross_attn and not sample_mode:
563
- logits = logits[:, :n]
564
- all_hidden_states = [hidden_states[:, :n] for hidden_states in all_hidden_states]
565
- return logits, all_hidden_states
566
-
567
- class BD3LM(transformers.PreTrainedModel):
568
- """HF-compatible model."""
569
- config_class = BD3LMConfig
570
- base_model_prefix = "bd3lm"
571
-
572
- def __init__(
573
- self,
574
- config: BD3LMConfig):
575
- super().__init__(config)
576
- self.config = config
577
- self.backbone = DITBackbone(config)
578
- if config.var_min:
579
- self.register_buffer(
580
- 'sampling_eps_min',
581
- torch.tensor(config.sampling_eps_min))
582
- self.register_buffer(
583
- 'sampling_eps_max',
584
- torch.tensor(config.sampling_eps_max))
585
-
586
- def reset_kv_cache(self):
587
- for block in self.backbone.blocks:
588
- block.kv_cache = None
589
-
590
- def forward(
591
- self,
592
- input_ids: torch.LongTensor = None,
593
- timesteps: torch.FloatTensor = None,
594
- sample_mode: typing.Optional[bool] = None,
595
- store_kv: typing.Optional[bool] = None,
596
- output_hidden_states: typing.Optional[bool] = None,
597
- return_dict: typing.Optional[bool] = None,
598
- ) -> typing.Union[
599
- torch.Tensor, typing.Tuple,
600
- modeling_outputs.MaskedLMOutput]:
601
- """HF-compatible forward method."""
602
- if sample_mode:
603
- assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA'
604
-
605
- output_hidden_states = (
606
- output_hidden_states
607
- if output_hidden_states is not None
608
- else self.config.output_hidden_states
609
- )
610
- return_dict = return_dict \
611
- if return_dict is not None \
612
- else self.config.use_return_dict
613
-
614
- logits, all_hidden_states = self.backbone(
615
- indices=input_ids,
616
- sigma=timesteps,
617
- sample_mode=sample_mode,
618
- store_kv=store_kv,
619
- output_hidden_states=output_hidden_states,
620
- )
621
- if return_dict:
622
- return modeling_outputs.MaskedLMOutput(
623
- logits=logits,
624
- hidden_states=all_hidden_states if output_hidden_states else None,
625
- loss=None
626
- )
627
- elif output_hidden_states:
628
- return logits, all_hidden_states
629
- else:
630
- return logits