File size: 1,312 Bytes
d43b6f0
 
 
 
 
 
 
 
 
 
 
385eb40
 
 
 
 
 
 
 
 
 
 
d43b6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- vllm
- mlx
- mlx-my-repo
base_model: unsloth/gpt-oss-20b
---

# mrtoots/unsloth-gpt-oss-20b-mlx-fp16

The Model [mrtoots/unsloth-gpt-oss-20b-mlx-fp16](https://huggingface.co/mrtoots/unsloth-gpt-oss-20b-mlx-fp16) was converted to MLX format from [unsloth/gpt-oss-20b](https://huggingface.co/unsloth/gpt-oss-20b) using mlx-lm version **0.26.4**.

## Toots' Note:
This model was converted and quantized utilizing unsloth's version of gpt-oss-20b.

Please follow and support [unsloth's work](https://huggingface.co/unsloth) if you like it!

🦛 <span style="color:#800080">If you want a free consulting session, </span>[fill out this form](https://forms.gle/xM9gw1urhypC4bWS6) <span style="color:#800080">to get in touch!</span> 🤗



## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mrtoots/gpt-oss-20b-mlx-fp16")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```