|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | from torch.nn import Conv1d, ConvTranspose1d, Conv2d | 
					
						
						|  | from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | 
					
						
						|  |  | 
					
						
						|  | from .activations import activations | 
					
						
						|  | from .utils import init_weights, get_padding | 
					
						
						|  | from .alias_free_torch import * | 
					
						
						|  |  | 
					
						
						|  | LRELU_SLOPE = 0.1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AMPBlock1(torch.nn.Module): | 
					
						
						|  | def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): | 
					
						
						|  | super(AMPBlock1, self).__init__() | 
					
						
						|  | self.h = h | 
					
						
						|  |  | 
					
						
						|  | self.convs1 = nn.ModuleList([ | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[0]))), | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[1]))), | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[2]))) | 
					
						
						|  | ]) | 
					
						
						|  | self.convs1.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | self.convs2 = nn.ModuleList([ | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | 
					
						
						|  | padding=get_padding(kernel_size, 1))), | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | 
					
						
						|  | padding=get_padding(kernel_size, 1))), | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | 
					
						
						|  | padding=get_padding(kernel_size, 1))) | 
					
						
						|  | ]) | 
					
						
						|  | self.convs2.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | self.num_layers = len(self.convs1) + len(self.convs2) | 
					
						
						|  |  | 
					
						
						|  | if activation == 'snake': | 
					
						
						|  | self.activations = nn.ModuleList([ | 
					
						
						|  | Activation1d( | 
					
						
						|  | activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) | 
					
						
						|  | for _ in range(self.num_layers) | 
					
						
						|  | ]) | 
					
						
						|  | elif activation == 'snakebeta': | 
					
						
						|  | self.activations = nn.ModuleList([ | 
					
						
						|  | Activation1d( | 
					
						
						|  | activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) | 
					
						
						|  | for _ in range(self.num_layers) | 
					
						
						|  | ]) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | acts1, acts2 = self.activations[::2], self.activations[1::2] | 
					
						
						|  | for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): | 
					
						
						|  | xt = a1(x) | 
					
						
						|  | xt = c1(xt) | 
					
						
						|  | xt = a2(xt) | 
					
						
						|  | xt = c2(xt) | 
					
						
						|  | x = xt + x | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | for l in self.convs1: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  | for l in self.convs2: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AMPBlock2(torch.nn.Module): | 
					
						
						|  | def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): | 
					
						
						|  | super(AMPBlock2, self).__init__() | 
					
						
						|  | self.h = h | 
					
						
						|  |  | 
					
						
						|  | self.convs = nn.ModuleList([ | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[0]))), | 
					
						
						|  | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[1]))) | 
					
						
						|  | ]) | 
					
						
						|  | self.convs.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | self.num_layers = len(self.convs) | 
					
						
						|  |  | 
					
						
						|  | if activation == 'snake': | 
					
						
						|  | self.activations = nn.ModuleList([ | 
					
						
						|  | Activation1d( | 
					
						
						|  | activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) | 
					
						
						|  | for _ in range(self.num_layers) | 
					
						
						|  | ]) | 
					
						
						|  | elif activation == 'snakebeta': | 
					
						
						|  | self.activations = nn.ModuleList([ | 
					
						
						|  | Activation1d( | 
					
						
						|  | activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) | 
					
						
						|  | for _ in range(self.num_layers) | 
					
						
						|  | ]) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | for c, a in zip (self.convs, self.activations): | 
					
						
						|  | xt = a(x) | 
					
						
						|  | xt = c(xt) | 
					
						
						|  | x = xt + x | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | for l in self.convs: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BigVGAN(torch.nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, h): | 
					
						
						|  | super(BigVGAN, self).__init__() | 
					
						
						|  | self.h = h | 
					
						
						|  |  | 
					
						
						|  | self.num_kernels = len(h.resblock_kernel_sizes) | 
					
						
						|  | self.num_upsamples = len(h.upsample_rates) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.ups = nn.ModuleList() | 
					
						
						|  | for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | 
					
						
						|  | self.ups.append(nn.ModuleList([ | 
					
						
						|  | weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i), | 
					
						
						|  | h.upsample_initial_channel // (2 ** (i + 1)), | 
					
						
						|  | k, u, padding=(k - u) // 2)) | 
					
						
						|  | ])) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.resblocks = nn.ModuleList() | 
					
						
						|  | for i in range(len(self.ups)): | 
					
						
						|  | ch = h.upsample_initial_channel // (2 ** (i + 1)) | 
					
						
						|  | for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | 
					
						
						|  | self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if h.activation == "snake": | 
					
						
						|  | activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale) | 
					
						
						|  | self.activation_post = Activation1d(activation=activation_post) | 
					
						
						|  | elif h.activation == "snakebeta": | 
					
						
						|  | activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale) | 
					
						
						|  | self.activation_post = Activation1d(activation=activation_post) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") | 
					
						
						|  |  | 
					
						
						|  | self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(self.ups)): | 
					
						
						|  | self.ups[i].apply(init_weights) | 
					
						
						|  | self.conv_post.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  |  | 
					
						
						|  | x = self.conv_pre(x) | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.num_upsamples): | 
					
						
						|  |  | 
					
						
						|  | for i_up in range(len(self.ups[i])): | 
					
						
						|  | x = self.ups[i][i_up](x) | 
					
						
						|  |  | 
					
						
						|  | xs = None | 
					
						
						|  | for j in range(self.num_kernels): | 
					
						
						|  | if xs is None: | 
					
						
						|  | xs = self.resblocks[i * self.num_kernels + j](x) | 
					
						
						|  | else: | 
					
						
						|  | xs += self.resblocks[i * self.num_kernels + j](x) | 
					
						
						|  | x = xs / self.num_kernels | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.activation_post(x) | 
					
						
						|  | x = self.conv_post(x) | 
					
						
						|  | x = torch.tanh(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | print('Removing weight norm...') | 
					
						
						|  | for l in self.ups: | 
					
						
						|  | for l_i in l: | 
					
						
						|  | remove_weight_norm(l_i) | 
					
						
						|  | for l in self.resblocks: | 
					
						
						|  | l.remove_weight_norm() | 
					
						
						|  | remove_weight_norm(self.conv_pre) | 
					
						
						|  | remove_weight_norm(self.conv_post) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DiscriminatorP(torch.nn.Module): | 
					
						
						|  | def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False): | 
					
						
						|  | super(DiscriminatorP, self).__init__() | 
					
						
						|  | self.period = period | 
					
						
						|  | self.d_mult = h.discriminator_channel_mult | 
					
						
						|  | norm_f = weight_norm if use_spectral_norm == False else spectral_norm | 
					
						
						|  | self.convs = nn.ModuleList([ | 
					
						
						|  | norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | 
					
						
						|  | norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))), | 
					
						
						|  | ]) | 
					
						
						|  | self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0))) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | fmap = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | b, c, t = x.shape | 
					
						
						|  | if t % self.period != 0: | 
					
						
						|  | n_pad = self.period - (t % self.period) | 
					
						
						|  | x = F.pad(x, (0, n_pad), "reflect") | 
					
						
						|  | t = t + n_pad | 
					
						
						|  | x = x.view(b, c, t // self.period, self.period) | 
					
						
						|  |  | 
					
						
						|  | for l in self.convs: | 
					
						
						|  | x = l(x) | 
					
						
						|  | x = F.leaky_relu(x, LRELU_SLOPE) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = self.conv_post(x) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = torch.flatten(x, 1, -1) | 
					
						
						|  |  | 
					
						
						|  | return x, fmap | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiPeriodDiscriminator(torch.nn.Module): | 
					
						
						|  | def __init__(self, h): | 
					
						
						|  | super(MultiPeriodDiscriminator, self).__init__() | 
					
						
						|  | self.mpd_reshapes = h.mpd_reshapes | 
					
						
						|  | print("mpd_reshapes: {}".format(self.mpd_reshapes)) | 
					
						
						|  | discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes] | 
					
						
						|  | self.discriminators = nn.ModuleList(discriminators) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, y, y_hat): | 
					
						
						|  | y_d_rs = [] | 
					
						
						|  | y_d_gs = [] | 
					
						
						|  | fmap_rs = [] | 
					
						
						|  | fmap_gs = [] | 
					
						
						|  | for i, d in enumerate(self.discriminators): | 
					
						
						|  | y_d_r, fmap_r = d(y) | 
					
						
						|  | y_d_g, fmap_g = d(y_hat) | 
					
						
						|  | y_d_rs.append(y_d_r) | 
					
						
						|  | fmap_rs.append(fmap_r) | 
					
						
						|  | y_d_gs.append(y_d_g) | 
					
						
						|  | fmap_gs.append(fmap_g) | 
					
						
						|  |  | 
					
						
						|  | return y_d_rs, y_d_gs, fmap_rs, fmap_gs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DiscriminatorR(nn.Module): | 
					
						
						|  | def __init__(self, cfg, resolution): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.resolution = resolution | 
					
						
						|  | assert len(self.resolution) == 3, \ | 
					
						
						|  | "MRD layer requires list with len=3, got {}".format(self.resolution) | 
					
						
						|  | self.lrelu_slope = LRELU_SLOPE | 
					
						
						|  |  | 
					
						
						|  | norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm | 
					
						
						|  | if hasattr(cfg, "mrd_use_spectral_norm"): | 
					
						
						|  | print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm)) | 
					
						
						|  | norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm | 
					
						
						|  | self.d_mult = cfg.discriminator_channel_mult | 
					
						
						|  | if hasattr(cfg, "mrd_channel_mult"): | 
					
						
						|  | print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult)) | 
					
						
						|  | self.d_mult = cfg.mrd_channel_mult | 
					
						
						|  |  | 
					
						
						|  | self.convs = nn.ModuleList([ | 
					
						
						|  | norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))), | 
					
						
						|  | norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), | 
					
						
						|  | norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), | 
					
						
						|  | norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), | 
					
						
						|  | norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))), | 
					
						
						|  | ]) | 
					
						
						|  | self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1))) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | fmap = [] | 
					
						
						|  |  | 
					
						
						|  | x = self.spectrogram(x) | 
					
						
						|  | x = x.unsqueeze(1) | 
					
						
						|  | for l in self.convs: | 
					
						
						|  | x = l(x) | 
					
						
						|  | x = F.leaky_relu(x, self.lrelu_slope) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = self.conv_post(x) | 
					
						
						|  | fmap.append(x) | 
					
						
						|  | x = torch.flatten(x, 1, -1) | 
					
						
						|  |  | 
					
						
						|  | return x, fmap | 
					
						
						|  |  | 
					
						
						|  | def spectrogram(self, x): | 
					
						
						|  | n_fft, hop_length, win_length = self.resolution | 
					
						
						|  | x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect') | 
					
						
						|  | x = x.squeeze(1) | 
					
						
						|  | x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True) | 
					
						
						|  | x = torch.view_as_real(x) | 
					
						
						|  | mag = torch.norm(x, p=2, dim =-1) | 
					
						
						|  |  | 
					
						
						|  | return mag | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiResolutionDiscriminator(nn.Module): | 
					
						
						|  | def __init__(self, cfg, debug=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.resolutions = cfg.resolutions | 
					
						
						|  | assert len(self.resolutions) == 3,\ | 
					
						
						|  | "MRD requires list of list with len=3, each element having a list with len=3. got {}".\ | 
					
						
						|  | format(self.resolutions) | 
					
						
						|  | self.discriminators = nn.ModuleList( | 
					
						
						|  | [DiscriminatorR(cfg, resolution) for resolution in self.resolutions] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, y, y_hat): | 
					
						
						|  | y_d_rs = [] | 
					
						
						|  | y_d_gs = [] | 
					
						
						|  | fmap_rs = [] | 
					
						
						|  | fmap_gs = [] | 
					
						
						|  |  | 
					
						
						|  | for i, d in enumerate(self.discriminators): | 
					
						
						|  | y_d_r, fmap_r = d(x=y) | 
					
						
						|  | y_d_g, fmap_g = d(x=y_hat) | 
					
						
						|  | y_d_rs.append(y_d_r) | 
					
						
						|  | fmap_rs.append(fmap_r) | 
					
						
						|  | y_d_gs.append(y_d_g) | 
					
						
						|  | fmap_gs.append(fmap_g) | 
					
						
						|  |  | 
					
						
						|  | return y_d_rs, y_d_gs, fmap_rs, fmap_gs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def feature_loss(fmap_r, fmap_g): | 
					
						
						|  | loss = 0 | 
					
						
						|  | for dr, dg in zip(fmap_r, fmap_g): | 
					
						
						|  | for rl, gl in zip(dr, dg): | 
					
						
						|  | loss += torch.mean(torch.abs(rl - gl)) | 
					
						
						|  |  | 
					
						
						|  | return loss*2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def discriminator_loss(disc_real_outputs, disc_generated_outputs): | 
					
						
						|  | loss = 0 | 
					
						
						|  | r_losses = [] | 
					
						
						|  | g_losses = [] | 
					
						
						|  | for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | 
					
						
						|  | r_loss = torch.mean((1-dr)**2) | 
					
						
						|  | g_loss = torch.mean(dg**2) | 
					
						
						|  | loss += (r_loss + g_loss) | 
					
						
						|  | r_losses.append(r_loss.item()) | 
					
						
						|  | g_losses.append(g_loss.item()) | 
					
						
						|  |  | 
					
						
						|  | return loss, r_losses, g_losses | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generator_loss(disc_outputs): | 
					
						
						|  | loss = 0 | 
					
						
						|  | gen_losses = [] | 
					
						
						|  | for dg in disc_outputs: | 
					
						
						|  | l = torch.mean((1-dg)**2) | 
					
						
						|  | gen_losses.append(l) | 
					
						
						|  | loss += l | 
					
						
						|  |  | 
					
						
						|  | return loss, gen_losses | 
					
						
						|  |  | 
					
						
						|  |  |