|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch LLaMA model.""" | 
					
						
						|  | import time | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union, Mapping | 
					
						
						|  | from contextlib import nullcontext | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | from accelerate import Accelerator | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import ( | 
					
						
						|  | AttentionMaskConverter, | 
					
						
						|  | _prepare_4d_attention_mask, | 
					
						
						|  | _prepare_4d_causal_attention_mask, | 
					
						
						|  | _prepare_4d_causal_attention_mask_for_sdpa, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithPast | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.integrations import is_deepspeed_zero3_enabled | 
					
						
						|  | from transformers.utils.import_utils import is_torch_fx_available | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_torch_fx_available(): | 
					
						
						|  | if not is_torch_greater_or_equal_than_1_13: | 
					
						
						|  | import torch.fx | 
					
						
						|  |  | 
					
						
						|  | _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | 
					
						
						|  |  | 
					
						
						|  | from .configuration_llama import LlamaConfig | 
					
						
						|  | from .modeling_ultragist import Memory | 
					
						
						|  | from .modeling_utils import optional_grad_ctx, compute_loss, ModelOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "LlamaConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | LlamaRMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaRotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._set_cos_sin_cache( | 
					
						
						|  | seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): | 
					
						
						|  | """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
						
						|  | t = t / self.scaling_factor | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): | 
					
						
						|  | """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_position_embeddings: | 
					
						
						|  | base = self.base * ( | 
					
						
						|  | (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | 
					
						
						|  | ) ** (self.dim / (self.dim - 2)) | 
					
						
						|  | inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`): | 
					
						
						|  | The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
						
						|  | used to pass offsetted position ids when working with a KV-cache. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb_single(x, cos, sin, position_ids): | 
					
						
						|  |  | 
					
						
						|  | cos = cos[position_ids].unsqueeze(1) | 
					
						
						|  | sin = sin[position_ids].unsqueeze(1) | 
					
						
						|  | x_embed = (x * cos) + (rotate_half(x) * sin) | 
					
						
						|  | return x_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = config.intermediate_size | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | if "mlp" in config.ultragist_param: | 
					
						
						|  | self.ultragist_up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.ultragist_up_proj.weight.data.zero_() | 
					
						
						|  | self.ultragist_up_proj._is_hf_initialized = True | 
					
						
						|  |  | 
					
						
						|  | self.ultragist_down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.ultragist_down_proj.weight.data.zero_() | 
					
						
						|  | self.ultragist_down_proj._is_hf_initialized = True | 
					
						
						|  |  | 
					
						
						|  | def _init_ultragist_proj(self, missing_keys): | 
					
						
						|  | """Initialize the ultragist projection weight with that of the ordinal projection.""" | 
					
						
						|  | if "mlp" in self.config.ultragist_param: | 
					
						
						|  | if is_deepspeed_zero3_enabled(): | 
					
						
						|  | import deepspeed | 
					
						
						|  | params = [self.up_proj.weight, self.down_proj.weight, self.ultragist_up_proj.weight, self.ultragist_down_proj.weight] | 
					
						
						|  | with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | 
					
						
						|  | if (self.ultragist_up_proj.weight.sum(-1) == 0).any(): | 
					
						
						|  | self.ultragist_up_proj.weight.data[:] = self.up_proj.weight.data | 
					
						
						|  | self.ultragist_down_proj.weight.data[:] = self.down_proj.weight.data | 
					
						
						|  | else: | 
					
						
						|  | if any("ultragist_up_proj" in missing_key for missing_key in missing_keys): | 
					
						
						|  |  | 
					
						
						|  | self.ultragist_up_proj.weight.data[:] = self.up_proj.weight.data | 
					
						
						|  | self.ultragist_down_proj.weight.data[:] = self.down_proj.weight.data | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, ultragist_size): | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  |  | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | slice = self.intermediate_size // self.config.pretraining_tp | 
					
						
						|  | gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) | 
					
						
						|  | up_proj_slices = self.up_proj.weight.split(slice, dim=0) | 
					
						
						|  | down_proj_slices = self.down_proj.weight.split(slice, dim=1) | 
					
						
						|  |  | 
					
						
						|  | gate_proj = torch.cat( | 
					
						
						|  | [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) | 
					
						
						|  | down_proj = [ | 
					
						
						|  | F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) | 
					
						
						|  | ] | 
					
						
						|  | down_proj = sum(down_proj) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | if "mlp" in self.config.ultragist_param: | 
					
						
						|  | if ultragist_size > 0: | 
					
						
						|  | ordinal_hidden_states = x[:, :-ultragist_size] | 
					
						
						|  | ultragist_hidden_states = x[:, -ultragist_size:] | 
					
						
						|  |  | 
					
						
						|  | ordinal_down_proj = self.down_proj(self.act_fn(self.gate_proj(ordinal_hidden_states)) * self.up_proj(ordinal_hidden_states)) | 
					
						
						|  | ultragist_down_proj = self.ultragist_down_proj(self.act_fn(self.gate_proj(ultragist_hidden_states)) * self.ultragist_up_proj(ultragist_hidden_states)) | 
					
						
						|  | down_proj = torch.cat([ordinal_down_proj, ultragist_down_proj], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  | else: | 
					
						
						|  | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  |  | 
					
						
						|  | return down_proj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | 
					
						
						|  | "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) | 
					
						
						|  | self._init_rope() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "q" in config.ultragist_param: | 
					
						
						|  | self.ultragist_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  |  | 
					
						
						|  | self.ultragist_q_proj.weight.data.zero_() | 
					
						
						|  | self.ultragist_q_proj._is_hf_initialized = True | 
					
						
						|  | if "k" in config.ultragist_param: | 
					
						
						|  | self.ultragist_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.ultragist_k_proj.weight.data.zero_() | 
					
						
						|  | self.ultragist_k_proj._is_hf_initialized = True | 
					
						
						|  | if "v" in config.ultragist_param: | 
					
						
						|  | self.ultragist_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.ultragist_v_proj.weight.data.zero_() | 
					
						
						|  | self.ultragist_v_proj._is_hf_initialized = True | 
					
						
						|  | if "o" in config.ultragist_param: | 
					
						
						|  | self.ultragist_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) | 
					
						
						|  | self.ultragist_o_proj.weight.data.zero_() | 
					
						
						|  | self.ultragist_o_proj._is_hf_initialized = True | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = LlamaRotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if scaling_type == "linear": | 
					
						
						|  | self.rotary_emb = LlamaLinearScalingRotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "dynamic": | 
					
						
						|  | self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def _init_ultragist_proj(self, missing_keys): | 
					
						
						|  | """Initialize the ultragist projection weight with that of the ordinal projection.""" | 
					
						
						|  | ultragist_param = self.config.ultragist_param | 
					
						
						|  |  | 
					
						
						|  | if is_deepspeed_zero3_enabled(): | 
					
						
						|  | import deepspeed | 
					
						
						|  | if "q" in ultragist_param: | 
					
						
						|  | with deepspeed.zero.GatheredParameters([self.ultragist_q_proj.weight, self.q_proj.weight], modifier_rank=0): | 
					
						
						|  |  | 
					
						
						|  | if (self.ultragist_q_proj.weight.sum(-1) == 0).any(): | 
					
						
						|  | self.ultragist_q_proj.weight.data[:] = self.q_proj.weight.data | 
					
						
						|  | if "k" in ultragist_param: | 
					
						
						|  | with deepspeed.zero.GatheredParameters([self.ultragist_k_proj.weight, self.k_proj.weight], modifier_rank=0): | 
					
						
						|  | if (self.ultragist_k_proj.weight.sum(-1) == 0).any(): | 
					
						
						|  | self.ultragist_k_proj.weight.data[:] = self.k_proj.weight.data | 
					
						
						|  | if "v" in ultragist_param: | 
					
						
						|  | with deepspeed.zero.GatheredParameters([self.ultragist_v_proj.weight, self.v_proj.weight], modifier_rank=0): | 
					
						
						|  | if (self.ultragist_v_proj.weight.sum(-1) == 0).any(): | 
					
						
						|  | self.ultragist_v_proj.weight.data[:] = self.v_proj.weight.data | 
					
						
						|  | if "o" in ultragist_param: | 
					
						
						|  | with deepspeed.zero.GatheredParameters([self.ultragist_o_proj.weight, self.o_proj.weight], modifier_rank=0): | 
					
						
						|  | if (self.ultragist_o_proj.weight.sum(-1) == 0).any(): | 
					
						
						|  | self.ultragist_o_proj.weight.data[:] = self.o_proj.weight.data | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if "q" in ultragist_param and any("ultragist_q_proj" in missing_key for missing_key in missing_keys): | 
					
						
						|  | if (self.ultragist_q_proj.weight == 0).all(): | 
					
						
						|  | self.ultragist_q_proj.weight.data[:] = self.q_proj.weight.data | 
					
						
						|  | if "k" in ultragist_param and any("ultragist_k_proj" in missing_key for missing_key in missing_keys): | 
					
						
						|  | if (self.ultragist_k_proj.weight == 0).all(): | 
					
						
						|  | self.ultragist_k_proj.weight.data[:] = self.k_proj.weight.data | 
					
						
						|  | if "v" in ultragist_param and any("ultragist_v_proj" in missing_key for missing_key in missing_keys): | 
					
						
						|  | if (self.ultragist_v_proj.weight == 0).all(): | 
					
						
						|  | self.ultragist_v_proj.weight.data[:] = self.v_proj.weight.data | 
					
						
						|  | if "o" in ultragist_param and any("ultragist_o_proj" in missing_key for missing_key in missing_keys): | 
					
						
						|  | if (self.ultragist_o_proj.weight == 0).all(): | 
					
						
						|  | self.ultragist_o_proj.weight.data[:] = self.o_proj.weight.data | 
					
						
						|  |  | 
					
						
						|  | def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | def qkv_proj_with_ultragist(self, hidden_states, ultragist_size=0): | 
					
						
						|  | if ultragist_size > 0: | 
					
						
						|  | ordinal_hidden_states = hidden_states[:, :-ultragist_size] | 
					
						
						|  | ultragist_hidden_states = hidden_states[:, -ultragist_size:] | 
					
						
						|  |  | 
					
						
						|  | if "q" in self.config.ultragist_param: | 
					
						
						|  | ordinal_query_states = self.q_proj(ordinal_hidden_states) | 
					
						
						|  | ultragist_query_states = self.ultragist_q_proj(ultragist_hidden_states) | 
					
						
						|  | query_states = torch.cat([ordinal_query_states, ultragist_query_states], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if "k" in self.config.ultragist_param: | 
					
						
						|  | ordinal_key_states = self.k_proj(ordinal_hidden_states) | 
					
						
						|  | ultragist_key_states = self.ultragist_k_proj(ultragist_hidden_states) | 
					
						
						|  | key_states = torch.cat([ordinal_key_states, ultragist_key_states], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if "v" in self.config.ultragist_param: | 
					
						
						|  | ordinal_value_states = self.v_proj(ordinal_hidden_states) | 
					
						
						|  | ultragist_value_states = self.ultragist_v_proj(ultragist_hidden_states) | 
					
						
						|  | value_states = torch.cat([ordinal_value_states, ultragist_value_states], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return query_states, key_states, value_states | 
					
						
						|  |  | 
					
						
						|  | def o_proj_with_ultragist(self, attn_output, ultragist_size=0): | 
					
						
						|  | if ultragist_size > 0: | 
					
						
						|  | if "o" in self.config.ultragist_param: | 
					
						
						|  | ordinal_attn_output = self.o_proj(attn_output[:, :-ultragist_size]) | 
					
						
						|  | ultragist_attn_output = self.ultragist_o_proj(attn_output[:, -ultragist_size:]) | 
					
						
						|  | attn_output = torch.cat([ordinal_attn_output, ultragist_attn_output], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  | kv_seq_len = hidden_states.shape[-2] | 
					
						
						|  | past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_value | 
					
						
						|  |  | 
					
						
						|  | if past_key is not None: | 
					
						
						|  | past_seq_len = past_key.shape[2] | 
					
						
						|  | kv_seq_len += past_seq_len | 
					
						
						|  | else: | 
					
						
						|  | past_seq_len = 0 | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states, value_states = self.qkv_proj_with_ultragist(hidden_states, total_ultragist_size) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if window_size > 0: | 
					
						
						|  | past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) | 
					
						
						|  |  | 
					
						
						|  | if past_key is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = torch.cat([past_key, key_states], dim=2) | 
					
						
						|  | value_states = torch.cat([past_value, value_states], dim=2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if window_size == 0: | 
					
						
						|  | past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) | 
					
						
						|  |  | 
					
						
						|  | key_position_ids = position_ids | 
					
						
						|  |  | 
					
						
						|  | query_position_ids = key_position_ids[:, -q_len:] | 
					
						
						|  |  | 
					
						
						|  | key_states = apply_rotary_pos_emb_single(key_states, cos, sin, key_position_ids) | 
					
						
						|  | query_states = apply_rotary_pos_emb_single(query_states, cos, sin, query_position_ids) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj_with_ultragist(attn_output, total_ultragist_size) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaSdpaAttention(LlamaAttention): | 
					
						
						|  | """ | 
					
						
						|  | Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  | kv_seq_len = hidden_states.shape[-2] | 
					
						
						|  | past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_value | 
					
						
						|  | if past_key is not None: | 
					
						
						|  | past_seq_len = past_key.shape[2] | 
					
						
						|  | kv_seq_len += past_seq_len | 
					
						
						|  | else: | 
					
						
						|  | past_seq_len = 0 | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states, value_states = self.qkv_proj_with_ultragist(hidden_states, total_ultragist_size) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if window_size > 0: | 
					
						
						|  | past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) | 
					
						
						|  |  | 
					
						
						|  | if past_key is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = torch.cat([past_key, key_states], dim=2) | 
					
						
						|  | value_states = torch.cat([past_value, value_states], dim=2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if window_size == 0: | 
					
						
						|  | past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) | 
					
						
						|  |  | 
					
						
						|  | key_position_ids = position_ids | 
					
						
						|  |  | 
					
						
						|  | query_position_ids = key_position_ids[:, -q_len:] | 
					
						
						|  |  | 
					
						
						|  | key_states = apply_rotary_pos_emb_single(key_states, cos, sin, key_position_ids) | 
					
						
						|  | query_states = apply_rotary_pos_emb_single(query_states, cos, sin, query_position_ids) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=attention_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  |  | 
					
						
						|  | is_causal=self.is_causal and attention_mask is None and q_len > 1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  | attn_output = self.o_proj_with_ultragist(attn_output, total_ultragist_size) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LLAMA_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": LlamaAttention, | 
					
						
						|  | "sdpa": LlamaSdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaDecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: LlamaConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = LlamaMLP(config) | 
					
						
						|  | self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): | 
					
						
						|  | attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | 
					
						
						|  | query_sequence_length, key_sequence_length)` if default attention is used. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | """ | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_value | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states, total_ultragist_size) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LLAMA_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`LlamaConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | LLAMA_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class LlamaPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = LlamaConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["LlamaDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LLAMA_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance; | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | LLAMA_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class LlamaModel(LlamaPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: LlamaConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: LlamaConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.ultragist_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.ultragist_embed_tokens._is_hf_initialized = True | 
					
						
						|  |  | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self._use_sdpa = config._attn_implementation == "sdpa" | 
					
						
						|  | self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def _init_ultragist_embed(self, missing_keys): | 
					
						
						|  | """Initialize the ultragist token embedding with that of the eos token.""" | 
					
						
						|  | if is_deepspeed_zero3_enabled(): | 
					
						
						|  | import deepspeed | 
					
						
						|  | params = [self.ultragist_embed_tokens.weight, self.embed_tokens.weight] | 
					
						
						|  | with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | 
					
						
						|  |  | 
					
						
						|  | if (self.ultragist_embed_tokens.weight == 0).all(): | 
					
						
						|  | if self.config.ultragist_embed_init == "bos": | 
					
						
						|  | self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] | 
					
						
						|  | elif self.config.ultragist_embed_init == "eos": | 
					
						
						|  | self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.eos_token_id] | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f"Make sure ultragist_embed_init is either eos or bos, found {self.config.ultragist_embed_init}") | 
					
						
						|  | else: | 
					
						
						|  | if any("ultragist_embed_tokens" in missing_key for missing_key in missing_keys): | 
					
						
						|  | if self.config.ultragist_embed_init == "bos": | 
					
						
						|  | self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] | 
					
						
						|  | elif self.config.ultragist_embed_init == "eos": | 
					
						
						|  | self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.eos_token_id] | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f"Make sure ultragist_embed_init is either eos or bos, found {self.config.ultragist_embed_init}") | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | use_cache = True | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape[:2] | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length = inputs_embeds.shape[:2] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  | seq_length_with_past = seq_length | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  | past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_values[0] | 
					
						
						|  |  | 
					
						
						|  | if past_key is not None: | 
					
						
						|  | past_key_values_length = past_key.shape[2] | 
					
						
						|  | seq_length_with_past = seq_length_with_past + past_key_values_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if total_ultragist_size > 0: | 
					
						
						|  | ordinal_input_ids = input_ids[:, :-total_ultragist_size] | 
					
						
						|  | ultragist_input_ids = input_ids[:, -total_ultragist_size:] | 
					
						
						|  | ordinal_inputs_embeds = self.embed_tokens(ordinal_input_ids) | 
					
						
						|  |  | 
					
						
						|  | ultragist_input_embeds = self.ultragist_embed_tokens(ultragist_input_ids - self.config.vocab_size) | 
					
						
						|  | inputs_embeds = torch.cat([ordinal_inputs_embeds, ultragist_input_embeds], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self._use_sdpa and not output_attentions and total_ultragist_size == 0: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | position_ids = torch.arange(seq_length_with_past, dtype=torch.long, device=device).repeat(batch_size, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if total_ultragist_size > 0: | 
					
						
						|  |  | 
					
						
						|  | condensing_size = window_size - raw_size_to_cache | 
					
						
						|  |  | 
					
						
						|  | window_size_with_ultragist = window_size + total_ultragist_size | 
					
						
						|  |  | 
					
						
						|  | memory_size = seq_length_with_past - window_size_with_ultragist | 
					
						
						|  | min_value = torch.finfo(inputs_embeds.dtype).min | 
					
						
						|  |  | 
					
						
						|  | ultragist_start_idx = -total_ultragist_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | reference_attention_mask = attention_mask[..., -total_ultragist_size - 1, -window_size_with_ultragist: -total_ultragist_size] | 
					
						
						|  |  | 
					
						
						|  | for ultragist_size in ultragist_sizes: | 
					
						
						|  |  | 
					
						
						|  | if ultragist_size < 0: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | token_per_ultragist = condensing_size // ultragist_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ultragist_end_idx = ultragist_start_idx + ultragist_size | 
					
						
						|  | if ultragist_end_idx == 0: | 
					
						
						|  | ultragist_end_idx = torch.iinfo(torch.long).max | 
					
						
						|  |  | 
					
						
						|  | if self.config.ultragist_attn == "step-expansion": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ultragist_arange = torch.arange(1, ultragist_size + 1, device=device) * token_per_ultragist | 
					
						
						|  |  | 
					
						
						|  | ordinal_arange = torch.arange(window_size, device=device) | 
					
						
						|  |  | 
					
						
						|  | valid_pos = ordinal_arange.expand(ultragist_size, window_size) < ultragist_arange.unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | ordinal_attention_mask = torch.where(valid_pos, 0, min_value) | 
					
						
						|  |  | 
					
						
						|  | ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) | 
					
						
						|  |  | 
					
						
						|  | if self.config.ultragist_attend_prev: | 
					
						
						|  | ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).triu(1) | 
					
						
						|  |  | 
					
						
						|  | ultragist_position_ids = torch.arange(token_per_ultragist, token_per_ultragist * ultragist_size + 1, token_per_ultragist) + memory_size | 
					
						
						|  | ultragist_position_ids = ultragist_position_ids + torch.arange(ultragist_size) | 
					
						
						|  | position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids | 
					
						
						|  | else: | 
					
						
						|  | ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).fill_diagonal_(0) | 
					
						
						|  |  | 
					
						
						|  | ultragist_position_ids = torch.arange(token_per_ultragist, token_per_ultragist * ultragist_size + 1, token_per_ultragist) + memory_size | 
					
						
						|  | position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids | 
					
						
						|  |  | 
					
						
						|  | attention_mask[..., ultragist_start_idx: ultragist_end_idx, -window_size_with_ultragist: -total_ultragist_size] = ordinal_attention_mask | 
					
						
						|  | attention_mask[..., ultragist_start_idx: ultragist_end_idx, ultragist_start_idx: ultragist_end_idx] = ultragist_attention_mask | 
					
						
						|  |  | 
					
						
						|  | attention_mask[..., ultragist_start_idx: ultragist_end_idx, -total_ultragist_size: ultragist_start_idx] = min_value | 
					
						
						|  |  | 
					
						
						|  | elif self.config.ultragist_attn == "segmentation": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | indices = torch.arange(token_per_ultragist * ultragist_size, device=device).view(ultragist_size, -1) | 
					
						
						|  |  | 
					
						
						|  | ordinal_attention_mask = attention_mask.new_full((ultragist_size, window_size), min_value) | 
					
						
						|  | ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) | 
					
						
						|  |  | 
					
						
						|  | if self.config.ultragist_attend_prev: | 
					
						
						|  | ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).triu(1) | 
					
						
						|  |  | 
					
						
						|  | ultragist_position_ids = position_ids.new_full(ultragist_size, fill_value=token_per_ultragist + memory_size) | 
					
						
						|  | ultragist_position_ids = ultragist_position_ids + torch.arange(ultragist_size) | 
					
						
						|  | position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids | 
					
						
						|  | else: | 
					
						
						|  | ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).fill_diagonal_(0) | 
					
						
						|  |  | 
					
						
						|  | ultragist_position_ids = position_ids.new_full(ultragist_size, fill_value=token_per_ultragist + memory_size) | 
					
						
						|  | position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids | 
					
						
						|  |  | 
					
						
						|  | attention_mask[..., ultragist_start_idx: ultragist_end_idx, -window_size_with_ultragist: -total_ultragist_size] = ordinal_attention_mask | 
					
						
						|  | attention_mask[..., ultragist_start_idx: ultragist_end_idx, ultragist_start_idx: ultragist_end_idx] = ultragist_attention_mask | 
					
						
						|  |  | 
					
						
						|  | attention_mask[..., ultragist_start_idx: ultragist_end_idx, -total_ultragist_size: ultragist_start_idx] = min_value | 
					
						
						|  |  | 
					
						
						|  | elif self.config.ultragist_attn == "full-coverage": | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | ultragist_start_idx = ultragist_end_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | next_decoder_cache = () if use_cache else None | 
					
						
						|  |  | 
					
						
						|  | for idx, decoder_layer in enumerate(self.layers): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key_value = past_key_values[idx] if past_key_values is not None else None | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_value, | 
					
						
						|  | output_attentions, | 
					
						
						|  | use_cache, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = next_decoder_cache if use_cache else None | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaForCausalLM(LlamaPreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = LlamaModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_pretrained(cls, *args, **kwargs): | 
					
						
						|  | """Override the default from_pretrained to extend vocab size according to ultragist_size.""" | 
					
						
						|  | kwargs.update(output_loading_info=True) | 
					
						
						|  | model, loading_info = super().from_pretrained(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = model.config | 
					
						
						|  | model.memory = Memory( | 
					
						
						|  | model_config=config, | 
					
						
						|  | k_seq_dim=2, | 
					
						
						|  | v_seq_dim=2, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | missing_keys = loading_info["missing_keys"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model.model._init_ultragist_embed(missing_keys) | 
					
						
						|  |  | 
					
						
						|  | for layer in model.model.layers: | 
					
						
						|  | layer.self_attn._init_ultragist_proj(missing_keys) | 
					
						
						|  | layer.mlp._init_ultragist_proj(missing_keys) | 
					
						
						|  |  | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  | def _native_forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | shift_labels: Optional[bool] = True, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, ModelOutput]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is None: | 
					
						
						|  |  | 
					
						
						|  | past_key_values = [(None, None, [0], 0, 0, 0) for _ in range(self.config.num_hidden_layers)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | if self.config.pretraining_tp > 1: | 
					
						
						|  | lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) | 
					
						
						|  | logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] | 
					
						
						|  | logits = torch.cat(logits, dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | logits = self.lm_head(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | batch_loss = None | 
					
						
						|  | valid_token_num = None | 
					
						
						|  |  | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss, batch_loss, valid_token_num = compute_loss(logits, labels, shift=shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return ModelOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | batch_loss=batch_loss, | 
					
						
						|  | valid_token_num=valid_token_num, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _ultragist_forward(self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.memory.prepare( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | labels=labels | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | while not self.memory.finish: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_ids, attention_mask, past_key_values, labels = self.memory.step() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.memory._step_idx == 1: | 
					
						
						|  | labels[:] = -100 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self._native_forward( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | labels=labels, | 
					
						
						|  |  | 
					
						
						|  | shift_labels=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.memory.update_memory(outputs.past_key_values) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | self.memory.update_loss(outputs.batch_loss, outputs.valid_token_num) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.memory.output(outputs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | def forward(self, **kwargs): | 
					
						
						|  | """Forward computation over a batch of sequences. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | with optional_grad_ctx(with_grad=self.training): | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "_enable_ultragist") and self._enable_ultragist == False: | 
					
						
						|  | return self._native_forward(**kwargs) | 
					
						
						|  | else: | 
					
						
						|  | return self._ultragist_forward(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | if past_key_values: | 
					
						
						|  | input_ids = input_ids[:, -1:] | 
					
						
						|  |  | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -1].unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  |