File size: 4,477 Bytes
5c6b4e6 a16b706 876aae1 a16b706 5c6b4e6 a16b706 5c6b4e6 a16b706 5c6b4e6 a16b706 5c6b4e6 a16b706 5c6b4e6 a16b706 5c6b4e6 a16b706 5c6b4e6 a16b706 6f97d0e 876aae1 6f97d0e a16b706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language: pt
tags:
- word-embeddings
- static
- portuguese
- wang2vec
- cbow
- 600d
license: cc-by-4.0
library_name: safetensors
pipeline_tag: feature-extraction
---
# NILC Portuguese Word Embeddings — Wang2Vec CBOW 600d
This repository contains the **Wang2Vec CBOW 600d** model in **safetensors** format.
## About
NILC-Embeddings is a repository for storing and sharing **word embeddings** for the Portuguese language. The goal is to provide ready-to-use vector resources for **Natural Language Processing (NLP)** and **Machine Learning** tasks.
The embeddings were trained on a large Portuguese corpus (Brazilian + European), composed of 17 corpora (~1.39B tokens). Training was carried out with the following algorithms: **Word2Vec**, **FastText**, **Wang2Vec**, and **GloVe**.
---
## 📂 Files
- `embeddings.safetensors` → embedding matrix (`[vocab_size, 600]`)
- `vocab.txt` → vocabulary (one token per line, aligned with rows)
---
## 🚀 Usage
```python
from huggingface_hub import hf_hub_download
from safetensors.numpy import load_file
path = hf_hub_download(repo_id="nilc-nlp/wang2vec-cbow-600d",
filename="embeddings.safetensors")
data = load_file(path)
vectors = data["embeddings"]
vocab_path = hf_hub_download(repo_id="nilc-nlp/wang2vec-cbow-600d",
filename="vocab.txt")
with open(vocab_path) as f:
vocab = [w.strip() for w in f]
print(vectors.shape)
```
Or in PyTorch:
```python
from safetensors.torch import load_file
tensors = load_file("embeddings.safetensors")
vectors = tensors["embeddings"] # torch.Tensor
```
---
## 📊 Corpus
The embeddings were trained on a combination of 17 corpora (~1.39B tokens):
| Corpus | Tokens | Types | Genre | Description |
|--------|--------|-------|-------|-------------|
| LX-Corpus [Rodrigues et al. 2016] | 714,286,638 | 2,605,393 | Mixed genres | Large collection of texts from 19 sources, mostly European Portuguese |
| Wikipedia | 219,293,003 | 1,758,191 | Encyclopedic | Wikipedia dump (2016-10-20) |
| GoogleNews | 160,396,456 | 664,320 | Informative | News crawled from Google News |
| SubIMDB-PT | 129,975,149 | 500,302 | Spoken | Movie subtitles from IMDb |
| G1 | 105,341,070 | 392,635 | Informative | News from G1 portal (2014–2015) |
| PLN-Br [Bruckschen et al. 2008] | 31,196,395 | 259,762 | Informative | Corpus of PLN-BR project (1994–2005) |
| Domínio Público | 23,750,521 | 381,697 | Prose | 138,268 literary works |
| Lacio-Web [Aluísio et al. 2003] | 8,962,718 | 196,077 | Mixed | Literary, informative, scientific, law, didactic texts |
| Literatura Brasileira | 1,299,008 | 66,706 | Prose | Classical Brazilian fiction e-books |
| Mundo Estranho | 1,047,108 | 55,000 | Informative | Texts from Mundo Estranho magazine |
| CHC | 941,032 | 36,522 | Informative | Texts from Ciência Hoje das Crianças |
| FAPESP | 499,008 | 31,746 | Science communication | Texts from Pesquisa FAPESP magazine |
| Textbooks | 96,209 | 11,597 | Didactic | Elementary school textbooks |
| Folhinha | 73,575 | 9,207 | Informative | Children’s news from Folhinha (Folha de São Paulo) |
| NILC subcorpus | 32,868 | 4,064 | Informative | Children’s texts (3rd–4th grade) |
| Para Seu Filho Ler | 21,224 | 3,942 | Informative | Children’s news from Zero Hora |
| SARESP | 13,308 | 3,293 | Didactic | School evaluation texts |
| **Total** | **1,395,926,282** | **3,827,725** | — | —
---
## 📖 Paper
**Portuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks**
Hartmann, N. et al. (2017), STIL 2017.
[ArXiv Paper](https://arxiv.org/abs/1708.06025)
### BibTeX
```bibtex
@inproceedings{hartmann-etal-2017-portuguese,
title = {{P}ortuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks},
author = {Hartmann, Nathan and Fonseca, Erick and Shulby, Christopher and Treviso, Marcos and Silva, J{'e}ssica and Alu{'i}sio, Sandra},
year = 2017,
month = oct,
booktitle = {Proceedings of the 11th {B}razilian Symposium in Information and Human Language Technology},
publisher = {Sociedade Brasileira de Computa{\c{c}}{\~a}o},
address = {Uberl{\^a}ndia, Brazil},
pages = {122--131},
url = {https://aclanthology.org/W17-6615/},
editor = {Paetzold, Gustavo Henrique and Pinheiro, Vl{'a}dia}
}
```
---
## 📜 License
Creative Commons Attribution 4.0 International (CC BY 4.0)
|