File size: 3,457 Bytes
d3dbf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": true,
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "from operator import itemgetter\n",
    "from mmaction.apis import init_recognizer, inference_recognizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "config_file = '../demo/demo_configs/tsn_r50_1x1x8_video_infer.py'\n",
    "# download the checkpoint from model zoo and put it in `checkpoints/`\n",
    "checkpoint_file = '../checkpoints/tsn_r50_8xb32-1x1x8-100e_kinetics400-rgb_20220818-2692d16c.pth'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loads checkpoint by local backend from path: ../checkpoints/tsn_r50_8xb32-1x1x8-100e_kinetics400-rgb_20220818-2692d16c.pth\n"
     ]
    }
   ],
   "source": [
    "# build the model from a config file and a checkpoint file\n",
    "model = init_recognizer(config_file, checkpoint_file, device='cpu')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "# test a single video and show the result:\n",
    "video = 'demo.mp4'\n",
    "label = '../tools/data/kinetics/label_map_k400.txt'\n",
    "results = inference_recognizer(model, video)\n",
    "\n",
    "pred_scores = results.pred_score.tolist()\n",
    "score_tuples = tuple(zip(range(len(pred_scores)), pred_scores))\n",
    "score_sorted = sorted(score_tuples, key=itemgetter(1), reverse=True)\n",
    "top5_label = score_sorted[:5]\n",
    "\n",
    "labels = open(label).readlines()\n",
    "labels = [x.strip() for x in labels]\n",
    "results = [(labels[k[0]], k[1]) for k in top5_label]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "arm wrestling:  1.0\n",
      "rock scissors paper:  1.698846019067312e-15\n",
      "massaging feet:  5.157996544393221e-16\n",
      "stretching leg:  1.018867278715779e-16\n",
      "bench pressing:  7.110452486439706e-17\n"
     ]
    }
   ],
   "source": [
    "# show the results\n",
    "for result in results:\n",
    "    print(f'{result[0]}: ', result[1])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "mmact_dev",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13 (default, Mar 29 2022, 02:18:16) \n[GCC 7.5.0]"
  },
  "vscode": {
   "interpreter": {
    "hash": "189c342a4747645665e89db23000ac4d4edb7a87c4cd0b2f881610f468fb778d"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}