File size: 6,072 Bytes
d3dbf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import tempfile

import cv2
import mmcv
import mmengine
import torch
from mmengine import DictAction
from mmengine.utils import track_iter_progress

from mmaction.apis import (detection_inference, inference_skeleton,
                           init_recognizer, pose_inference)
from mmaction.registry import VISUALIZERS
from mmaction.utils import frame_extract

try:
    import moviepy.editor as mpy
except ImportError:
    raise ImportError('Please install moviepy to enable output file')

FONTFACE = cv2.FONT_HERSHEY_DUPLEX
FONTSCALE = 0.75
FONTCOLOR = (255, 255, 255)  # BGR, white
THICKNESS = 1
LINETYPE = 1


def parse_args():
    parser = argparse.ArgumentParser(description='MMAction2 demo')
    parser.add_argument('video', help='video file/url')
    parser.add_argument('out_filename', help='output filename')
    parser.add_argument(
        '--config',
        default=('configs/skeleton/posec3d/'
                 'slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint.py'),
        help='skeleton model config file path')
    parser.add_argument(
        '--checkpoint',
        default=('https://download.openmmlab.com/mmaction/skeleton/posec3d/'
                 'slowonly_r50_u48_240e_ntu60_xsub_keypoint/'
                 'slowonly_r50_u48_240e_ntu60_xsub_keypoint-f3adabf1.pth'),
        help='skeleton model checkpoint file/url')
    parser.add_argument(
        '--det-config',
        default='demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py',
        help='human detection config file path (from mmdet)')
    parser.add_argument(
        '--det-checkpoint',
        default=('http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/'
                 'faster_rcnn_r50_fpn_2x_coco/'
                 'faster_rcnn_r50_fpn_2x_coco_'
                 'bbox_mAP-0.384_20200504_210434-a5d8aa15.pth'),
        help='human detection checkpoint file/url')
    parser.add_argument(
        '--det-score-thr',
        type=float,
        default=0.9,
        help='the threshold of human detection score')
    parser.add_argument(
        '--det-cat-id',
        type=int,
        default=0,
        help='the category id for human detection')
    parser.add_argument(
        '--pose-config',
        default='demo/demo_configs/'
        'td-hm_hrnet-w32_8xb64-210e_coco-256x192_infer.py',
        help='human pose estimation config file path (from mmpose)')
    parser.add_argument(
        '--pose-checkpoint',
        default=('https://download.openmmlab.com/mmpose/top_down/hrnet/'
                 'hrnet_w32_coco_256x192-c78dce93_20200708.pth'),
        help='human pose estimation checkpoint file/url')
    parser.add_argument(
        '--label-map',
        default='tools/data/skeleton/label_map_ntu60.txt',
        help='label map file')
    parser.add_argument(
        '--device', type=str, default='cuda:0', help='CPU/CUDA device option')
    parser.add_argument(
        '--short-side',
        type=int,
        default=480,
        help='specify the short-side length of the image')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        default={},
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. For example, '
        "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
    args = parser.parse_args()
    return args


def visualize(args, frames, data_samples, action_label):
    pose_config = mmengine.Config.fromfile(args.pose_config)
    visualizer = VISUALIZERS.build(pose_config.visualizer)
    visualizer.set_dataset_meta(data_samples[0].dataset_meta)

    vis_frames = []
    print('Drawing skeleton for each frame')
    for d, f in track_iter_progress(list(zip(data_samples, frames))):
        f = mmcv.imconvert(f, 'bgr', 'rgb')
        visualizer.add_datasample(
            'result',
            f,
            data_sample=d,
            draw_gt=False,
            draw_heatmap=False,
            draw_bbox=True,
            show=False,
            wait_time=0,
            out_file=None,
            kpt_thr=0.3)
        vis_frame = visualizer.get_image()
        cv2.putText(vis_frame, action_label, (10, 30), FONTFACE, FONTSCALE,
                    FONTCOLOR, THICKNESS, LINETYPE)
        vis_frames.append(vis_frame)

    vid = mpy.ImageSequenceClip(vis_frames, fps=24)
    vid.write_videofile(args.out_filename, remove_temp=True)


def main():
    args = parse_args()

    tmp_dir = tempfile.TemporaryDirectory()
    frame_paths, frames = frame_extract(args.video, args.short_side,
                                        tmp_dir.name)

    h, w, _ = frames[0].shape

    # Get Human detection results.
    det_results, _ = detection_inference(args.det_config, args.det_checkpoint,
                                         frame_paths, args.det_score_thr,
                                         args.det_cat_id, args.device)
    torch.cuda.empty_cache()

    # Get Pose estimation results.
    pose_results, pose_data_samples = pose_inference(args.pose_config,
                                                     args.pose_checkpoint,
                                                     frame_paths, det_results,
                                                     args.device)
    torch.cuda.empty_cache()

    config = mmengine.Config.fromfile(args.config)
    config.merge_from_dict(args.cfg_options)

    model = init_recognizer(config, args.checkpoint, args.device)
    result = inference_skeleton(model, pose_results, (h, w))

    max_pred_index = result.pred_score.argmax().item()
    label_map = [x.strip() for x in open(args.label_map).readlines()]
    action_label = label_map[max_pred_index]

    visualize(args, frames, pose_data_samples, action_label)

    tmp_dir.cleanup()


if __name__ == '__main__':
    main()