File size: 18,247 Bytes
d3dbf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# Migration from MMAction2 0.x

MMAction2 1.x introduced major refactorings and modifications including some BC-breaking changes. We provide this tutorial to help you migrate your projects from MMAction2 0.x smoothly.

## New dependencies

MMAction2 1.x depends on the following packages. You are recommended to prepare a new clean environment and install them according to [install tutorial](./get_started/installation.md)

1. [MMEngine](https://github.com/open-mmlab/mmengine): MMEngine is a foundational library for training deep learning model introduced in OpenMMLab 2.0 architecture.
2. [MMCV](https://github.com/open-mmlab/mmcv): MMCV is a foundational library for computer vision. MMAction2 1.x requires `mmcv>=2.0.0` which is more compact and efficient than `mmcv-full==2.0.0`.

## Configuration files

In MMAction2 1.x, we refactored the structure of configuration files. The configuration files with the old style will be incompatible.

In this section, we will introduce all changes of the configuration files. And we assume you are already familiar with the [config files](./user_guides/config.md).

### Model settings

No changes in `model.backbone` and `model.neck`. For `model.cls_head`, we move the `average_clips` inside it, which is originally set in `model.test_cfg`.

### Data settings

#### Changes in **`data`**

- The original `data` field is splited to `train_dataloader`, `val_dataloader` and
  `test_dataloader`. This allows us to configure them in fine-grained. For example,
  you can specify different sampler and batch size during training and test.
- The `videos_per_gpu` is renamed to `batch_size`.
- The `workers_per_gpu` is renamed to `num_workers`.

<table class="docutils">
<tr>
<td>Original</td>
<td>

```python

data = dict(

    videos_per_gpu=32,

    workers_per_gpu=2,

    train=dict(...),

    val=dict(...),

    test=dict(...),

)

```

</td>
<tr>
<td>New</td>
<td>

```python

train_dataloader = dict(

    batch_size=32,

    num_workers=2,

    dataset=dict(...),

    sampler=dict(type='DefaultSampler', shuffle=True)  # necessary

)



val_dataloader = dict(

    batch_size=32,

    num_workers=2,

    dataset=dict(...),

    sampler=dict(type='DefaultSampler', shuffle=False)  # necessary

)



test_dataloader = val_dataloader

```

</td>
</tr>
</table>

#### Changes in **`pipeline`**

- The original formatting transforms **`ToTensor`**, **`Collect`** are combined as `PackActionInputs`.
- We don't recommend to do **`Normalize`** in the dataset pipeline. Please remove it from pipelines and set it in the `model.data_preprocessor` field.

<table class="docutils">
<tr>
<td>Original</td>
<td>

```python



train_pipeline = [

    dict(type='DecordInit'),

    dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),

    dict(type='DecordDecode'),

    dict(type='Resize', scale=(-1, 256)),

    dict(

        type='MultiScaleCrop',

        input_size=224,

        scales=(1, 0.875, 0.75, 0.66),

        random_crop=False,

        max_wh_scale_gap=1),

    dict(type='Resize', scale=(224, 224), keep_ratio=False),

    dict(type='Flip', flip_ratio=0.5),

    dict(type='Normalize', **img_norm_cfg),

    dict(type='FormatShape', input_format='NCHW'),

    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),

    dict(type='ToTensor', keys=['imgs', 'label'])

]

```

</td>
<tr>
<td>New</td>
<td>

```python

model.data_preprocessor = dict(

    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=False)



train_pipeline = [

    dict(type='DecordInit'),

    dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=5),

    dict(type='DecordDecode'),

    dict(type='Resize', scale=(-1, 256)),

    dict(

        type='MultiScaleCrop',

        input_size=224,

        scales=(1, 0.875, 0.75, 0.66),

        random_crop=False,

        max_wh_scale_gap=1),

    dict(type='Resize', scale=(224, 224), keep_ratio=False),

    dict(type='Flip', flip_ratio=0.5),

    dict(type='FormatShape', input_format='NCHW'),

    dict(type='PackActionInputs')

]

```

</td>
</tr>
</table>

#### Changes in **`evaluation`**

- The **`evaluation`** field is splited to `val_evaluator` and `test_evaluator`. And it won't support `interval` and `save_best` arguments.
- The `interval` is moved to `train_cfg.val_interval` and the `save_best` is moved to `default_hooks.checkpoint.save_best`.
- The 'mean_average_precision', 'mean_class_accuracy', 'mmit_mean_average_precision', 'top_k_accuracy' are combined as `AccMetric`, and you could use `metric_list` to specify which metric to calculate.
- The `AVAMetric` is used to evaluate AVA Dataset.
- The `ANetMetric` is used to evaluate ActivityNet Dataset.

<table class="docutils">
<tr>
<td>Original</td>
<td>

```python

evaluation = dict(

    interval=5,

    metrics=['top_k_accuracy', 'mean_class_accuracy'])

```

</td>
<tr>
<td>New</td>
<td>

```python

val_evaluator = dict(

    type='AccMetric',

    metric_list=('top_k_accuracy', 'mean_class_accuracy'))

test_evaluator = val_evaluator

```

</td>
</tr>
</table>

### Schedule settings

#### Changes in **`optimizer`** and **`optimizer_config`**



- Now we use `optim_wrapper` field to configure the optimization process. And the

  `optimizer` becomes a sub field of `optim_wrapper`.

- `paramwise_cfg` is also a sub field of `optim_wrapper` parallel to `optimizer`.

- `optimizer_config` is removed now, and all configurations of it are moved to `optim_wrapper`.

- `grad_clip` is renamed to `clip_grad`.



<table class="docutils">

<tr>

<td>Original</td>

<td>



```python

optimizer = dict(

    type='AdamW',

    lr=0.0015,

    weight_decay=0.3,

    paramwise_cfg = dict(

        norm_decay_mult=0.0,

        bias_decay_mult=0.0,

    ))



optimizer_config = dict(grad_clip=dict(max_norm=1.0))

```



</td>

<tr>

<td>New</td>

<td>



```python

optim_wrapper = dict(

    optimizer=dict(type='AdamW', lr=0.0015, weight_decay=0.3),

    paramwise_cfg = dict(

        norm_decay_mult=0.0,

        bias_decay_mult=0.0,

    ),

    clip_gard=dict(max_norm=1.0),

)

```



</td>

</tr>

</table>



#### Changes in **`lr_config`**

- The `lr_config` field is removed and we use new `param_scheduler` to replace it.
- The `warmup` related arguments are removed, since we use schedulers combination to implement this
  functionality.

The new schedulers combination mechanism is very flexible, and you can use it to design many kinds of learning
rate / momentum curves.

<table class="docutils">
<tr>
<td>Original</td>
<td>

```python

lr_config = dict(

    policy='CosineAnnealing',

    min_lr=0,

    warmup='linear',

    warmup_iters=5,

    warmup_ratio=0.01,

    warmup_by_epoch=True)

```

</td>
<tr>
<td>New</td>
<td>

```python

param_scheduler = [

    # warmup

    dict(

        type='LinearLR',

        start_factor=0.01,

        by_epoch=True,

        end=5,

        # Update the learning rate after every iters.

        convert_to_iter_based=True),

    # main learning rate scheduler

    dict(type='CosineAnnealingLR', by_epoch=True, begin=5),

]

```

</td>
</tr>
</table>

#### Changes in **`runner`**

Most configuration in the original `runner` field is moved to `train_cfg`, `val_cfg` and `test_cfg`, which
configure the loop in training, validation and test.

<table class="docutils">
<tr>
<td>Original</td>
<td>

```python

runner = dict(type='EpochBasedRunner', max_epochs=100)

```

</td>
<tr>
<td>New</td>
<td>

```python

# The `val_interval` is the original `evaluation.interval`.

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100, val_begin=1, val_interval=1)

val_cfg = dict(type='ValLoop')   # Use the default validation loop.

test_cfg = dict(type='TestLoop')  # Use the default test loop.

```

</td>
</tr>
</table>

In fact, in OpenMMLab 2.0, we introduced `Loop` to control the behaviors in training, validation and test. And
the functionalities of `Runner` are also changed. You can find more details in the [MMEngine tutorials](https://mmengine.readthedocs.io/en/latest/tutorials/runner.html).

### Runtime settings

#### Changes in **`checkpoint_config`** and **`log_config`**

The `checkpoint_config` are moved to `default_hooks.checkpoint` and the `log_config` are moved to `default_hooks.logger`.
And we move many hooks settings from the script code to the `default_hooks` field in the runtime configuration.

```python

default_hooks = dict(

    # update runtime information, e.g. current iter and lr.

    runtime_info=dict(type='RuntimeInfoHook'),



    # record the time of every iterations.

    timer=dict(type='IterTimerHook'),



    # print log every 100 iterations.

    logger=dict(type='LoggerHook', interval=100),



    # enable the parameter scheduler.

    param_scheduler=dict(type='ParamSchedulerHook'),



    # save checkpoint per epoch, and automatically save the best checkpoint.

    checkpoint=dict(type='CheckpointHook', interval=1, save_best='auto'),



    # set sampler seed in distributed environment.

    sampler_seed=dict(type='DistSamplerSeedHook'),



    # synchronize model buffers at the end of each epoch.

    sync_buffers=dict(type='SyncBuffersHook')

)

```

In addition, we splited the original logger to logger and visualizer. The logger is used to record
information and the visualizer is used to show the logger in different backends, like terminal, TensorBoard
and Wandb.

<table class="docutils">
<tr>
<td>Original</td>
<td>

```python

log_config = dict(

    interval=100,

    hooks=[

        dict(type='TextLoggerHook'),

        dict(type='TensorboardLoggerHook'),

    ])

```

</td>
<tr>
<td>New</td>
<td>

```python

default_hooks = dict(

    ...

    logger=dict(type='LoggerHook', interval=100),

)



visualizer = dict(

    type='ActionVisualizer',

    vis_backends=[dict(type='LocalVisBackend'), dict(type='TensorboardVisBackend')],

)

```

</td>
</tr>
</table>

#### Changes in **`load_from`** and **`resume_from`**

- The `resume_from` is removed. And we use `resume` and `load_from` to replace it.
  - If `resume=True` and `load_from` is not None, resume training from the checkpoint in `load_from`.
  - If `resume=True` and `load_from` is None, try to resume from the latest checkpoint in the work directory.
  - If `resume=False` and `load_from` is not None, only load the checkpoint, not resume training.
  - If `resume=False` and `load_from` is None, do not load nor resume.

#### Changes in **`dist_params`**



The `dist_params` field is a sub field of `env_cfg` now. And there are some new configurations in the `env_cfg`.



```python

env_cfg = dict(

    # whether to enable cudnn benchmark

    cudnn_benchmark=False,



    # set multi process parameters

    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),



    # set distributed parameters

    dist_cfg=dict(backend='nccl'),

)

```



#### Changes in **`workflow`**

`Workflow` related functionalities are removed.

#### New field **`visualizer`**

The visualizer is a new design in OpenMMLab 2.0 architecture. We use a visualizer instance in the runner to handle results & log visualization and save to different backends.

```python

visualizer = dict(

    type='ActionVisualizer',

    vis_backends=[

        dict(type='LocalVisBackend'),

        # Uncomment the below line to save the log and visualization results to TensorBoard.

        # dict(type='TensorboardVisBackend')

    ]

)

```

#### New field **`default_scope`**



The start point to search module for all registries. The `default_scope` in MMAction2 is `mmaction`. See [the registry tutorial](https://mmengine.readthedocs.io/en/latest/tutorials/registry.html) for more details.



## Packages



### `mmaction.apis`



The documentation can be found [here](mmaction.apis).



|        Function        |                     Changes                     |

| :--------------------: | :---------------------------------------------: |

|   `init_recognizer`    |                   No changes                    |

| `inference_recognizer` |                   No changes                    |

|     `train_model`      |      Removed, use `runner.train` to train.      |

|    `multi_gpu_test`    |       Removed, use `runner.test` to test.       |

|   `single_gpu_test`    |       Removed, use `runner.test` to test.       |

|   `set_random_seed`    | Removed, use `mmengine.runner.set_random_seed`. |

|   `init_random_seed`   | Removed, use `mmengine.dist.sync_random_seed`.  |



### `mmaction.core`



The `mmaction.core` package is renamed to [`mmaction.engine`](mmaction.engine).



| Sub package  |                                               Changes                                               |

| :----------: | :-------------------------------------------------------------------------------------------------: |

| `evaluation` |                         Removed, use the metrics in `mmaction.evaluation`.                          |

|   `hooks`    |                                  Moved to `mmaction.engine.hooks`                                   |

| `optimizer`  |                                Moved to `mmaction.engine.optimizers`                                |

|   `utils`    | Removed, the distributed environment related functions can be found in the `mmengine.dist` package. |



### `mmaction.datasets`



The documentation can be found [here](mmaction.datasets)



#### Changes in [`BaseActionDataset`](mmaction.datasets.BaseActionDataset):



|         Method         |                    Changes                    |

| :--------------------: | :-------------------------------------------: |

| `prepare_train_frames` |          Replaced by `get_data_info`          |

| `preprare_test_frames` |          Replaced by `get_data_info`          |

|       `evaluate`       |  Removed, use `mmengine.evaluator.Evaluator`  |

|     `dump_results`     | Removed, use `mmengine.evaluator.DumpResults` |

|   `load_annotations`   |         Replaced by `load_data_list`          |



Now, you can write a new Dataset class inherited from `BaseActionDataset` and overwrite `load_data_list` only. To load more data information, you could overwrite `get_data_info` like `RawframeDataset` and `AVADataset`.

The `mmaction.datasets.pipelines` is renamed to `mmaction.datasets.transforms` and the `mmaction.datasets.pipelines.augmentations` is renamed to `mmaction.datasets.pipelines.processing`.



### `mmaction.models`



The documentation can be found [here](mmaction.models). The interface of all **backbones**, **necks** and **losses** didn't change.



#### Changes in [`BaseRecognizer`](mmaction.models.BaseRecognizer):



|     Method      |                                                                                Changes                                                                                 |

| :-------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------: |

| `extract_feat`  | Enhanced method, which now supports output features of three stages (`backbone`, `neck`, `head`) and can handle different modes, such as `train_mode` and `test_mode`. |

|    `forward`    |            Now only accepts three arguments: `inputs`, `data_samples` and `mode`. See [the documentation](mmaction.models.BaseRecognizer) for more details.            |

| `forward_train` |                                                                          Replaced by `loss`.                                                                           |

| `forward_test`  |                                                                         Replaced by `predict`.                                                                         |

|  `train_step`   |                         The `optimizer` argument is replaced by `optim_wrapper` and it accepts [`OptimWrapper`](mmengine.optim.OptimWrapper).                          |

|   `val_step`    |                                              The original `val_step` is the same as `train_step`, now it calls `predict`.                                              |

|   `test_step`   |                                                              New method, and it's the same as `val_step`.                                                              |



#### Changes in [BaseHead](mmaction.models.BaseHead):



|  Method   |                                                                                        Changes                                                                                         |

| :-------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |

| `forward` |                                                                                       No changes                                                                                       |

|  `loss`   | It accepts `feats` and `data_samples` instead of `cls_score` and `labels` to calculate loss. The `data_samples` is a list of [ActionDataSample](mmaction.structures.ActionDataSample). |

| `predict` |                                                  New method. It accepts `feats` and `data_samples` to predict classification scores.                                                   |



### `mmaction.utils`



|        Function         |                            Changes                            |

| :---------------------: | :-----------------------------------------------------------: |

|      `collect_env`      |                          No changes                           |

|    `get_root_logger`    |     Removed, use `mmengine.MMLogger.get_current_instance`     |

| `setup_multi_processes` | Removed, use `mmengine.utils.dl_utils.setup_multi_processes`. |



### Other changes



- We moved the definition of all registries in different packages to the `mmaction.registry` package.