File size: 4,414 Bytes
d3dbf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp

import mmengine
import numpy as np
import torch
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm


def check_norm_state(modules, train_state):
    """Check if norm layer is in correct train state."""
    for mod in modules:
        if isinstance(mod, _BatchNorm):
            if mod.training != train_state:
                return False
    return True


def generate_backbone_demo_inputs(input_shape=(1, 3, 64, 64)):
    """Create a superset of inputs needed to run backbone.



    Args:

        input_shape (tuple): input batch dimensions.

            Defaults to ``(1, 3, 64, 64)``.

    """
    imgs = np.random.random(input_shape)
    imgs = torch.FloatTensor(imgs)

    return imgs


# TODO Remove this API
def generate_recognizer_demo_inputs(

        input_shape=(1, 3, 3, 224, 224), model_type='2D'):
    """Create a superset of inputs needed to run test or train batches.



    Args:

        input_shape (tuple): input batch dimensions.

            Default: (1, 250, 3, 224, 224).

        model_type (str): Model type for data generation, from {'2D', '3D'}.

            Default:'2D'

    """
    if len(input_shape) == 5:
        (N, L, _, _, _) = input_shape
    elif len(input_shape) == 6:
        (N, M, _, L, _, _) = input_shape

    imgs = np.random.random(input_shape)

    if model_type == '2D' or model_type == 'skeleton':
        gt_labels = torch.LongTensor([2] * N)
    elif model_type == '3D':
        gt_labels = torch.LongTensor([2] * M)
    elif model_type == 'audio':
        gt_labels = torch.LongTensor([2] * L)
    else:
        raise ValueError(f'Data type {model_type} is not available')

    inputs = {'imgs': torch.FloatTensor(imgs), 'gt_labels': gt_labels}
    return inputs


def generate_detector_demo_inputs(

        input_shape=(1, 3, 4, 224, 224), num_classes=81, train=True,

        device='cpu'):
    num_samples = input_shape[0]
    if not train:
        assert num_samples == 1

    def random_box(n):
        box = torch.rand(n, 4) * 0.5
        box[:, 2:] += 0.5
        box[:, 0::2] *= input_shape[3]
        box[:, 1::2] *= input_shape[4]
        if device == 'cuda':
            box = box.cuda()
        return box

    def random_label(n):
        label = torch.randn(n, num_classes)
        label = (label > 0.8).type(torch.float32)
        label[:, 0] = 0
        if device == 'cuda':
            label = label.cuda()
        return label

    img = torch.FloatTensor(np.random.random(input_shape))
    if device == 'cuda':
        img = img.cuda()

    proposals = [random_box(2) for i in range(num_samples)]
    gt_bboxes = [random_box(2) for i in range(num_samples)]
    gt_labels = [random_label(2) for i in range(num_samples)]
    img_metas = [dict(img_shape=input_shape[-2:]) for i in range(num_samples)]

    if train:
        return dict(
            img=img,
            proposals=proposals,
            gt_bboxes=gt_bboxes,
            gt_labels=gt_labels,
            img_metas=img_metas)

    return dict(img=[img], proposals=[proposals], img_metas=[img_metas])


def get_cfg(config_type, fname):
    """Grab configs necessary to create a recognizer.



    These are deep copied to allow for safe modification of parameters without

    influencing other tests.

    """
    config_types = ('recognition', 'recognition_audio', 'localization',
                    'detection', 'skeleton', 'retrieval')
    assert config_type in config_types

    repo_dpath = osp.dirname(osp.dirname(osp.dirname(__file__)))
    config_dpath = osp.join(repo_dpath, 'configs/' + config_type)
    config_fpath = osp.join(config_dpath, fname)
    if not osp.exists(config_dpath):
        raise Exception('Cannot find config path')
    config = mmengine.Config.fromfile(config_fpath)
    return config


def get_recognizer_cfg(fname):
    return get_cfg('recognition', fname)


def get_audio_recognizer_cfg(fname):
    return get_cfg('recognition_audio', fname)


def get_localizer_cfg(fname):
    return get_cfg('localization', fname)


def get_detector_cfg(fname):
    return get_cfg('detection', fname)


def get_skeletongcn_cfg(fname):
    return get_cfg('skeleton', fname)


def get_similarity_cfg(fname):
    return get_cfg('retrieval', fname)