File size: 2,447 Bytes
d3dbf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmaction.structures import bbox2result
def test_bbox2result():
bboxes = torch.tensor([[0.072, 0.47, 0.84, 0.898],
[0.23, 0.215, 0.781, 0.534],
[0.195, 0.128, 0.643, 0.944],
[0.236, 0.189, 0.689, 0.74],
[0.375, 0.371, 0.726, 0.804],
[0.024, 0.398, 0.776, 0.719]])
labels = torch.tensor([[-1.650, 0.515, 0.798, 1.240],
[1.368, -1.128, 0.037, -1.087],
[0.481, -1.303, 0.501, -0.463],
[-0.356, 0.126, -0.840, 0.438],
[0.079, 1.269, -0.263, -0.538],
[-0.853, 0.391, 0.103, 0.398]])
num_classes = 4
# Test for multi-label
result = bbox2result(bboxes, labels, num_classes)
assert np.all(
np.isclose(
result[0],
np.array([[0.072, 0.47, 0.84, 0.898, 0.515],
[0.236, 0.189, 0.689, 0.74, 0.126],
[0.375, 0.371, 0.726, 0.804, 1.269],
[0.024, 0.398, 0.776, 0.719, 0.391]])))
assert np.all(
np.isclose(
result[1],
np.array([[0.072, 0.47, 0.84, 0.898, 0.798],
[0.23, 0.215, 0.781, 0.534, 0.037],
[0.195, 0.128, 0.643, 0.944, 0.501],
[0.024, 0.398, 0.776, 0.719, 0.103]])))
assert np.all(
np.isclose(
result[2],
np.array([[0.072, 0.47, 0.84, 0.898, 1.24],
[0.236, 0.189, 0.689, 0.74, 0.438],
[0.024, 0.398, 0.776, 0.719, 0.398]])))
# Test for single-label
result = bbox2result(bboxes, labels, num_classes, -1.0)
assert np.all(
np.isclose(result[0], np.array([[0.375, 0.371, 0.726, 0.804, 1.269]])))
assert np.all(
np.isclose(
result[1],
np.array([[0.23, 0.215, 0.781, 0.534, 0.037],
[0.195, 0.128, 0.643, 0.944, 0.501]])))
assert np.all(
np.isclose(
result[2],
np.array([[0.072, 0.47, 0.84, 0.898, 1.240],
[0.236, 0.189, 0.689, 0.74, 0.438],
[0.024, 0.398, 0.776, 0.719, 0.398]])))
|