File size: 4,680 Bytes
d3dbf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import tempfile

import torch
from mmengine import dump, list_from_file, load
from mmengine.config import Config, DictAction
from mmengine.evaluator import Evaluator
from mmengine.runner import Runner

from mmaction.evaluation import ConfusionMatrix
from mmaction.registry import DATASETS
from mmaction.utils import register_all_modules


def parse_args():
    parser = argparse.ArgumentParser(
        description='Eval a checkpoint and draw the confusion matrix.')
    parser.add_argument('config', help='test config file path')
    parser.add_argument(
        'ckpt_or_result',
        type=str,
        help='The checkpoint file (.pth) or '
        'dumpped predictions pickle file (.pkl).')
    parser.add_argument('--out', help='the file to save the confusion matrix.')
    parser.add_argument(
        '--show',
        action='store_true',
        help='whether to display the metric result by matplotlib if supports.')
    parser.add_argument(
        '--show-path', type=str, help='Path to save the visualization image.')
    parser.add_argument(
        '--include-values',
        action='store_true',
        help='To draw the values in the figure.')
    parser.add_argument('--label-file', default=None, help='Labelmap file')
    parser.add_argument(
        '--target-classes',
        type=int,
        nargs='+',
        default=[],
        help='Selected classes to evaluate, and remains will be neglected')
    parser.add_argument(
        '--cmap',
        type=str,
        default='viridis',
        help='The color map to use. Defaults to "viridis".')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()

    # register all modules in mmaction into the registries
    # do not init the default scope here because it will be init in the runner
    register_all_modules(init_default_scope=False)

    # load config
    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    if args.ckpt_or_result.endswith('.pth'):
        # Set confusion matrix as the metric.
        cfg.test_evaluator = dict(type='ConfusionMatrix')

        cfg.load_from = str(args.ckpt_or_result)

        with tempfile.TemporaryDirectory() as tmpdir:
            cfg.work_dir = tmpdir
            runner = Runner.from_cfg(cfg)
            classes = runner.test_loop.dataloader.dataset.metainfo.get(
                'classes')
            cm = runner.test()['confusion_matrix/result']
            logging.shutdown()
    else:
        predictions = load(args.ckpt_or_result)
        evaluator = Evaluator(ConfusionMatrix())
        metrics = evaluator.offline_evaluate(predictions, None)
        cm = metrics['confusion_matrix/result']
        try:
            # Try to build the dataset.
            dataset = DATASETS.build({
                **cfg.test_dataloader.dataset, 'pipeline': []
            })
            classes = dataset.metainfo.get('classes')
        except Exception:
            classes = None

    if args.label_file is not None:
        classes = list_from_file(args.label_file)
    if classes is None:
        num_classes = cm.shape[0]
        classes = list(range(num_classes))

    if args.target_classes:
        assert len(args.target_classes) > 1, \
            'please ensure select more than one class'
        target_idx = torch.tensor(args.target_classes)
        cm = cm[target_idx][:, target_idx]
        classes = [classes[idx] for idx in target_idx]

    if args.out is not None:
        dump(cm, args.out)

    if args.show or args.show_path is not None:
        fig = ConfusionMatrix.plot(
            cm,
            show=args.show,
            classes=classes,
            include_values=args.include_values,
            cmap=args.cmap)
        if args.show_path is not None:
            fig.savefig(args.show_path)
            print(f'The confusion matrix is saved at {args.show_path}.')


if __name__ == '__main__':
    main()