File size: 6,294 Bytes
d3dbf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp

import cv2
import numpy as np


def flow_to_img(raw_flow, bound=20.):
    """Convert flow to gray image.



    Args:

        raw_flow (np.ndarray[float]): Estimated flow with the shape (w, h).

        bound (float): Bound for the flow-to-image normalization. Default: 20.



    Returns:

        np.ndarray[uint8]: The result list of np.ndarray[uint8], with shape

                        (w, h).

    """
    flow = np.clip(raw_flow, -bound, bound)
    flow += bound
    flow *= (255 / float(2 * bound))
    flow = flow.astype(np.uint8)
    return flow


def generate_flow(frames, method='tvl1'):
    """Estimate flow with given frames.



    Args:

        frames (list[np.ndarray[uint8]]): List of rgb frames, with shape

                                        (w, h, 3).

        method (str): Use which method to generate flow. Options are 'tvl1'

                    and 'farneback'. Default: 'tvl1'.



    Returns:

        list[np.ndarray[float]]: The result list of np.ndarray[float], with

                                shape (w, h, 2).

    """
    assert method in ['tvl1', 'farneback']
    gray_frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) for frame in frames]

    if method == 'tvl1':
        tvl1 = cv2.optflow.DualTVL1OpticalFlow_create()

        def op(x, y):
            return tvl1.calc(x, y, None)
    elif method == 'farneback':

        def op(x, y):
            return cv2.calcOpticalFlowFarneback(x, y, None, 0.5, 3, 15, 3, 5,
                                                1.2, 0)

    gray_st = gray_frames[:-1]
    gray_ed = gray_frames[1:]

    flow = [op(x, y) for x, y in zip(gray_st, gray_ed)]
    return flow


def extract_dense_flow(path,

                       dest,

                       bound=20.,

                       save_rgb=False,

                       start_idx=0,

                       rgb_tmpl='img_{:05d}.jpg',

                       flow_tmpl='{}_{:05d}.jpg',

                       method='tvl1'):
    """Extract dense flow given video or frames, save them as gray-scale

    images.



    Args:

        path (str): Location of the input video.

        dest (str): The directory to store the extracted flow images.

        bound (float): Bound for the flow-to-image normalization. Default: 20.

        save_rgb (bool): Save extracted RGB frames. Default: False.

        start_idx (int): The starting frame index if use frames as input, the

            first image is path.format(start_idx). Default: 0.

        rgb_tmpl (str): The template of RGB frame names, Default:

            'img_{:05d}.jpg'.

        flow_tmpl (str): The template of Flow frame names, Default:

            '{}_{:05d}.jpg'.

        method (str): Use which method to generate flow. Options are 'tvl1'

            and 'farneback'. Default: 'tvl1'.

    """

    frames = []
    assert osp.exists(path)
    video = cv2.VideoCapture(path)
    flag, f = video.read()
    while flag:
        frames.append(f)
        flag, f = video.read()

    flow = generate_flow(frames, method=method)

    flow_x = [flow_to_img(x[:, :, 0], bound) for x in flow]
    flow_y = [flow_to_img(x[:, :, 1], bound) for x in flow]

    if not osp.exists(dest):
        os.system('mkdir -p ' + dest)
    flow_x_names = [
        osp.join(dest, flow_tmpl.format('x', ind + start_idx))
        for ind in range(len(flow_x))
    ]
    flow_y_names = [
        osp.join(dest, flow_tmpl.format('y', ind + start_idx))
        for ind in range(len(flow_y))
    ]

    num_frames = len(flow)
    for i in range(num_frames):
        cv2.imwrite(flow_x_names[i], flow_x[i])
        cv2.imwrite(flow_y_names[i], flow_y[i])

    if save_rgb:
        img_names = [
            osp.join(dest, rgb_tmpl.format(ind + start_idx))
            for ind in range(len(frames))
        ]
        for frame, name in zip(frames, img_names):
            cv2.imwrite(name, frame)


def parse_args():
    parser = argparse.ArgumentParser(description='Extract flow and RGB images')
    parser.add_argument(
        '--input',
        help='videos for frame extraction, can be'
        'single video or a video list, the video list should be a txt file '
        'and just consists of filenames without directories')
    parser.add_argument(
        '--prefix',
        default='',
        help='the prefix of input '
        'videos, used when input is a video list')
    parser.add_argument(
        '--dest',
        default='',
        help='the destination to save '
        'extracted frames')
    parser.add_argument(
        '--save-rgb', action='store_true', help='also save '
        'rgb frames')
    parser.add_argument(
        '--rgb-tmpl',
        default='img_{:05d}.jpg',
        help='template filename of rgb frames')
    parser.add_argument(
        '--flow-tmpl',
        default='{}_{:05d}.jpg',
        help='template filename of flow frames')
    parser.add_argument(
        '--start-idx',
        type=int,
        default=1,
        help='the start '
        'index of extracted frames')
    parser.add_argument(
        '--method',
        default='tvl1',
        help='use which method to '
        'generate flow')
    parser.add_argument(
        '--bound', type=float, default=20, help='maximum of '
        'optical flow')

    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    if args.input.endswith('.txt'):
        lines = open(args.input).readlines()
        lines = [x.strip() for x in lines]
        videos = [osp.join(args.prefix, x) for x in lines]
        dests = [osp.join(args.dest, x.split('.')[0]) for x in lines]
        for video, dest in zip(videos, dests):
            extract_dense_flow(video, dest, args.bound, args.save_rgb,
                               args.start_idx, args.rgb_tmpl, args.flow_tmpl,
                               args.method)
    else:
        extract_dense_flow(args.input, args.dest, args.bound, args.save_rgb,
                           args.start_idx, args.rgb_tmpl, args.flow_tmpl,
                           args.method)