File size: 7,277 Bytes
d3dbf03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from typing import Dict, List, Optional, Tuple
import mmcv
import numpy as np
import torch.nn as nn
from mmengine import Config, DictAction
from mmengine.dataset import Compose, pseudo_collate
from mmaction.apis import init_recognizer
from mmaction.utils import GradCAM
def parse_args():
parser = argparse.ArgumentParser(
description='MMAction2 GradCAM Visualization')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file/url')
parser.add_argument('video', help='video file/url or rawframes directory')
parser.add_argument(
'--use-frames',
default=False,
action='store_true',
help='whether to use rawframes as input')
parser.add_argument(
'--device', type=str, default='cuda:0', help='CPU/CUDA device option')
parser.add_argument(
'--target-layer-name',
type=str,
default='backbone/layer4/1/relu',
help='GradCAM target layer name')
parser.add_argument('--out-filename', default=None, help='output filename')
parser.add_argument('--fps', default=5, type=int)
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--target-resolution',
nargs=2,
default=None,
type=int,
help='Target resolution (w, h) for resizing the frames when using a '
'video as input. If either dimension is set to -1, the frames are '
'resized by keeping the existing aspect ratio')
parser.add_argument(
'--resize-algorithm',
default='bilinear',
help='resize algorithm applied to generate video & gif')
args = parser.parse_args()
return args
def build_inputs(model: nn.Module,
video_path: str,
use_frames: bool = False) -> Dict:
"""build inputs for GradCAM.
Note that, building inputs for GradCAM is exactly the same as building
inputs for Recognizer test stage. Codes from `inference_recognizer`.
Args:
model (nn.Module): Recognizer model.
video_path (str): video file/url or rawframes directory.
use_frames (bool): whether to use rawframes as input.
Defaults to False.
Returns:
dict: Both GradCAM inputs and Recognizer test stage inputs,
including two keys, ``inputs`` and ``data_samples``.
"""
if not (osp.exists(video_path) or video_path.startswith('http')):
raise RuntimeError(f"'{video_path}' is missing")
if osp.isfile(video_path) and use_frames:
raise RuntimeError(
f"'{video_path}' is a video file, not a rawframe directory")
if osp.isdir(video_path) and not use_frames:
raise RuntimeError(
f"'{video_path}' is a rawframe directory, not a video file")
cfg = model.cfg
# build the data pipeline
test_pipeline = cfg.test_pipeline
test_pipeline = Compose(test_pipeline)
# prepare data
if use_frames:
filename_tmpl = cfg.test_dataloader.dataset.get(
'filename_tmpl', 'img_{:05}.jpg')
start_index = cfg.test_dataloader.dataset.get('start_index', 1)
data = dict(
frame_dir=video_path,
total_frames=len(os.listdir(video_path)),
label=-1,
start_index=start_index,
filename_tmpl=filename_tmpl,
modality='RGB')
else:
start_index = cfg.test_dataloader.dataset.get('start_index', 0)
data = dict(
filename=video_path,
label=-1,
start_index=start_index,
modality='RGB')
data = test_pipeline(data)
data = pseudo_collate([data])
return data
def _resize_frames(frame_list: List[np.ndarray],
scale: Optional[Tuple[int]] = None,
keep_ratio: bool = True,
interpolation: str = 'bilinear') -> List[np.ndarray]:
"""Resize frames according to given scale.
Codes are modified from `mmaction/datasets/transforms/processing.py`,
`Resize` class.
Args:
frame_list (list[np.ndarray]): Frames to be resized.
scale (tuple[int]): If keep_ratio is True, it serves as scaling
factor or maximum size: the image will be rescaled as large
as possible within the scale. Otherwise, it serves as (w, h)
of output size.
keep_ratio (bool): If set to True, Images will be resized without
changing the aspect ratio. Otherwise, it will resize images to a
given size. Defaults to True.
interpolation (str): Algorithm used for interpolation:
'nearest' | 'bilinear'. Defaults to ``'bilinear'``.
Returns:
list[np.ndarray]: Resized frames.
"""
if scale is None or (scale[0] == -1 and scale[1] == -1):
return frame_list
scale = tuple(scale)
max_long_edge = max(scale)
max_short_edge = min(scale)
if max_short_edge == -1:
scale = (np.inf, max_long_edge)
img_h, img_w, _ = frame_list[0].shape
if keep_ratio:
new_w, new_h = mmcv.rescale_size((img_w, img_h), scale)
else:
new_w, new_h = scale
frame_list = [
mmcv.imresize(img, (new_w, new_h), interpolation=interpolation)
for img in frame_list
]
return frame_list
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
cfg.merge_from_dict(args.cfg_options)
# Build the recognizer from a config file and checkpoint file/url
model = init_recognizer(cfg, args.checkpoint, device=args.device)
inputs = build_inputs(model, args.video, use_frames=args.use_frames)
gradcam = GradCAM(model, args.target_layer_name)
results = gradcam(inputs)
if args.out_filename is not None:
try:
from moviepy.editor import ImageSequenceClip
except ImportError:
raise ImportError('Please install moviepy to enable output file.')
# frames_batches shape [B, T, H, W, 3], in RGB order
frames_batches = (results[0] * 255.).numpy().astype(np.uint8)
frames = frames_batches.reshape(-1, *frames_batches.shape[-3:])
frame_list = list(frames)
frame_list = _resize_frames(
frame_list,
args.target_resolution,
interpolation=args.resize_algorithm)
video_clips = ImageSequenceClip(frame_list, fps=args.fps)
out_type = osp.splitext(args.out_filename)[1][1:]
if out_type == 'gif':
video_clips.write_gif(args.out_filename)
else:
video_clips.write_videofile(args.out_filename, remove_temp=True)
if __name__ == '__main__':
main()
|