mmaction2 / mmaction /engine /model /weight_init.py
niobures's picture
mmaction2
d3dbf03 verified
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch.nn as nn
from mmengine.model import BaseInit, update_init_info
from mmaction.registry import WEIGHT_INITIALIZERS
def conv_branch_init(conv: nn.Module, branches: int) -> None:
"""Perform initialization for a conv branch.
Args:
conv (nn.Module): The conv module of a branch.
branches (int): The number of branches.
"""
weight = conv.weight
n = weight.size(0)
k1 = weight.size(1)
k2 = weight.size(2)
nn.init.normal_(weight, 0, math.sqrt(2. / (n * k1 * k2 * branches)))
nn.init.constant_(conv.bias, 0)
@WEIGHT_INITIALIZERS.register_module('ConvBranch')
class ConvBranchInit(BaseInit):
"""Initialize the module parameters of different branches.
Args:
name (str): The name of the target module.
"""
def __init__(self, name: str, **kwargs) -> None:
super(ConvBranchInit, self).__init__(**kwargs)
self.name = name
def __call__(self, module) -> None:
assert hasattr(module, self.name)
# Take a short cut to get the target module
module = getattr(module, self.name)
num_subset = len(module)
for conv in module:
conv_branch_init(conv, num_subset)
if hasattr(module, '_params_init_info'):
update_init_info(module, init_info=self._get_init_info())
def _get_init_info(self) -> str:
info = f'{self.__class__.__name__}'
return info