niobures's picture
mmaction2
d3dbf03 verified
import torch
import torch.nn as nn
from clip.model import Transformer
from mmengine.model import BaseModule
class TransformerAdapter(BaseModule):
def __init__(self,
clip_model: nn.Module,
num_segs: int,
num_layers: int = 6):
super(TransformerAdapter, self).__init__()
self.num_segs = num_segs
embed_dim = clip_model.text_projection.shape[1]
transformer_width = clip_model.ln_final.weight.shape[0]
transformer_heads = transformer_width // 64
self.frame_position_embeddings = nn.Embedding(self.num_segs, embed_dim)
self.transformer = Transformer(
width=embed_dim, layers=num_layers, heads=transformer_heads)
def init_weights(self):
for module in self.modules():
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(self, x: torch.Tensor):
b, seq_length, c = x.size()
x_original = x
position_ids = torch.arange(
seq_length, dtype=torch.long, device=x.device)
embeddings = self.frame_position_embeddings(position_ids)
x = x + embeddings.unsqueeze(0)
x = x.transpose(0, 1) # NLD -> LND
x = self.transformer(x)
x = x.transpose(0, 1) # LND -> NLD
x = x.type(x_original.dtype) + x_original
return x.mean(dim=1)