|
|
|
import pytest
|
|
import torch
|
|
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
|
|
|
|
from mmaction.models import MobileNetV2
|
|
from mmaction.testing import check_norm_state, generate_backbone_demo_inputs
|
|
|
|
|
|
def test_mobilenetv2_backbone():
|
|
"""Test MobileNetV2.
|
|
|
|
Modified from mmclassification.
|
|
"""
|
|
from torch.nn.modules import GroupNorm
|
|
|
|
from mmaction.models.backbones.mobilenet_v2 import InvertedResidual
|
|
|
|
def is_norm(modules):
|
|
"""Check if is one of the norms."""
|
|
if isinstance(modules, (GroupNorm, _BatchNorm)):
|
|
return True
|
|
return False
|
|
|
|
def is_block(modules):
|
|
"""Check if is ResNet building block."""
|
|
if isinstance(modules, (InvertedResidual, )):
|
|
return True
|
|
return False
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
model = MobileNetV2()
|
|
model.init_weights(pretrained=0)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
MobileNetV2(frozen_stages=9)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
MobileNetV2(out_indices=[8])
|
|
|
|
input_shape = (1, 3, 224, 224)
|
|
imgs = generate_backbone_demo_inputs(input_shape)
|
|
|
|
|
|
frozen_stages = 1
|
|
model = MobileNetV2(frozen_stages=frozen_stages)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
for mod in model.conv1.modules():
|
|
for param in mod.parameters():
|
|
assert param.requires_grad is False
|
|
for i in range(1, frozen_stages + 1):
|
|
layer = getattr(model, f'layer{i}')
|
|
for mod in layer.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
assert mod.training is False
|
|
for param in layer.parameters():
|
|
assert param.requires_grad is False
|
|
|
|
|
|
frozen_stages = 8
|
|
model = MobileNetV2(frozen_stages=frozen_stages)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
for mod in model.modules():
|
|
if not isinstance(mod, MobileNetV2):
|
|
assert mod.training is False
|
|
for param in mod.parameters():
|
|
assert param.requires_grad is False
|
|
|
|
|
|
model = MobileNetV2(norm_eval=True)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
assert check_norm_state(model.modules(), False)
|
|
|
|
|
|
model = MobileNetV2(
|
|
widen_factor=1.0,
|
|
out_indices=range(0, 8),
|
|
pretrained='mmcls://mobilenet_v2')
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
assert check_norm_state(model.modules(), True)
|
|
|
|
feat = model(imgs)
|
|
assert len(feat) == 8
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
assert feat[7].shape == torch.Size((1, 1280, 7, 7))
|
|
|
|
|
|
model = MobileNetV2(widen_factor=0.5, out_indices=range(0, 7))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 8, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 16, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 16, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 32, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 48, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 80, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 160, 7, 7))
|
|
|
|
|
|
model = MobileNetV2(widen_factor=2.0)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert feat.shape == torch.Size((1, 2560, 7, 7))
|
|
|
|
|
|
model = MobileNetV2(widen_factor=1.0)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert feat.shape == torch.Size((1, 1280, 7, 7))
|
|
|
|
|
|
model = MobileNetV2(
|
|
widen_factor=1.0, act_cfg=dict(type='ReLU'), out_indices=range(0, 7))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
|
|
|
|
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 7))
|
|
for m in model.modules():
|
|
if is_norm(m):
|
|
assert isinstance(m, _BatchNorm)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
|
|
|
|
model = MobileNetV2(
|
|
widen_factor=1.0,
|
|
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
|
|
out_indices=range(0, 7))
|
|
for m in model.modules():
|
|
if is_norm(m):
|
|
assert isinstance(m, GroupNorm)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
|
|
|
|
model = MobileNetV2(widen_factor=1.0, out_indices=(0, 2, 4))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert len(feat) == 3
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[2].shape == torch.Size((1, 96, 14, 14))
|
|
|
|
|
|
model = MobileNetV2(
|
|
widen_factor=1.0, with_cp=True, out_indices=range(0, 7))
|
|
for m in model.modules():
|
|
if is_block(m):
|
|
assert m.with_cp
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
feat = model(imgs)
|
|
assert len(feat) == 7
|
|
assert feat[0].shape == torch.Size((1, 16, 112, 112))
|
|
assert feat[1].shape == torch.Size((1, 24, 56, 56))
|
|
assert feat[2].shape == torch.Size((1, 32, 28, 28))
|
|
assert feat[3].shape == torch.Size((1, 64, 14, 14))
|
|
assert feat[4].shape == torch.Size((1, 96, 14, 14))
|
|
assert feat[5].shape == torch.Size((1, 160, 7, 7))
|
|
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|
|
|