|
|
|
import argparse
|
|
import sys
|
|
import warnings
|
|
from copy import deepcopy
|
|
|
|
import cv2
|
|
import mmcv
|
|
import numpy as np
|
|
from mmengine.config import Config, DictAction
|
|
from mmengine.dataset import Compose
|
|
from mmengine.registry import init_default_scope
|
|
from mmengine.utils import ProgressBar
|
|
from mmengine.visualization import Visualizer
|
|
|
|
from mmaction.registry import DATASETS
|
|
from mmaction.visualization import ActionVisualizer
|
|
from mmaction.visualization.action_visualizer import _get_adaptive_scale
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Browse a dataset')
|
|
parser.add_argument('config', help='train config file path')
|
|
parser.add_argument(
|
|
'output_dir', default=None, type=str, help='output directory')
|
|
parser.add_argument('--label', default=None, type=str, help='label file')
|
|
parser.add_argument(
|
|
'--phase',
|
|
'-p',
|
|
default='train',
|
|
type=str,
|
|
choices=['train', 'test', 'val'],
|
|
help='phase of dataset to visualize, accept "train" "test" and "val".'
|
|
' Defaults to "train".')
|
|
parser.add_argument(
|
|
'--show-number',
|
|
'-n',
|
|
type=int,
|
|
default=sys.maxsize,
|
|
help='number of images selected to visualize, must bigger than 0. if '
|
|
'the number is bigger than length of dataset, show all the images in '
|
|
'dataset; default "sys.maxsize", show all images in dataset')
|
|
parser.add_argument(
|
|
'--fps',
|
|
default=5,
|
|
type=int,
|
|
help='specify fps value of the output video when using rawframes to '
|
|
'generate file')
|
|
parser.add_argument(
|
|
'--mode',
|
|
'-m',
|
|
default='transformed',
|
|
type=str,
|
|
choices=['original', 'transformed', 'concat', 'pipeline'],
|
|
help='display mode; display original pictures or transformed pictures'
|
|
' or comparison pictures. "original" means show images load from disk'
|
|
'; "transformed" means to show images after transformed; "concat" '
|
|
'means show images stitched by "original" and "output" images. '
|
|
'"pipeline" means show all the intermediate images. '
|
|
'Defaults to "transformed".')
|
|
parser.add_argument(
|
|
'--rescale-factor',
|
|
'-r',
|
|
type=float,
|
|
help='video rescale factor, which is useful if the output is too '
|
|
'large or too small.')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def make_grid(videos, names, rescale_factor=None):
|
|
"""Concat list of pictures into a single big picture, align height here."""
|
|
vis = Visualizer()
|
|
|
|
ori_shapes = [vid[0].shape[:2] for vid in videos]
|
|
if rescale_factor is not None:
|
|
videos = [[mmcv.imrescale(img, rescale_factor) for img in video]
|
|
for video in videos]
|
|
|
|
max_height = int(max(vid[0].shape[0] for vid in videos) * 1.4)
|
|
min_width = min(vid[0].shape[1] for vid in videos)
|
|
horizontal_gap = min_width // 10
|
|
img_scale = _get_adaptive_scale((max_height, min_width))
|
|
|
|
texts = []
|
|
text_positions = []
|
|
start_x = 0
|
|
for i, vid in enumerate(videos):
|
|
for j, img in enumerate(vid):
|
|
pad_height = (max_height - img.shape[0]) // 2
|
|
pad_width = horizontal_gap // 2
|
|
|
|
videos[i][j] = cv2.copyMakeBorder(
|
|
img,
|
|
pad_height,
|
|
max_height - img.shape[0] - pad_height +
|
|
int(img_scale * 30 * 2),
|
|
pad_width,
|
|
pad_width,
|
|
cv2.BORDER_CONSTANT,
|
|
value=(255, 255, 255))
|
|
|
|
texts.append(f'{names[i]}\n{ori_shapes[i]}')
|
|
text_positions.append(
|
|
[start_x + img.shape[1] // 2 + pad_width, max_height])
|
|
start_x += img.shape[1] + horizontal_gap
|
|
|
|
out_frames = []
|
|
for i in range(len(videos[0])):
|
|
imgs = [vid[i] for vid in videos]
|
|
display_img = np.concatenate(imgs, axis=1)
|
|
vis.set_image(display_img)
|
|
img_scale = _get_adaptive_scale(display_img.shape[:2])
|
|
vis.draw_texts(
|
|
texts,
|
|
positions=np.array(text_positions),
|
|
font_sizes=img_scale * 7,
|
|
colors='black',
|
|
horizontal_alignments='center',
|
|
font_families='monospace')
|
|
out_frames.append(vis.get_image())
|
|
return out_frames
|
|
|
|
|
|
class InspectCompose(Compose):
|
|
"""Compose multiple transforms sequentially.
|
|
|
|
And record "imgs" field of all results in one list.
|
|
"""
|
|
|
|
def __init__(self, transforms, intermediate_imgs):
|
|
super().__init__(transforms=transforms)
|
|
self.intermediate_imgs = intermediate_imgs
|
|
|
|
def __call__(self, data):
|
|
|
|
for idx, t in enumerate(self.transforms):
|
|
data = t(data)
|
|
if data is None:
|
|
return None
|
|
if 'imgs' in data:
|
|
name = t.__class__.__name__
|
|
imgs = deepcopy(data['imgs'])
|
|
if name == 'FormatShape':
|
|
continue
|
|
if name == 'ThreeCrop':
|
|
n_crops = 3
|
|
clip_len = len(imgs) // n_crops
|
|
crop_imgs = [
|
|
imgs[idx * clip_len:(idx + 1) * clip_len]
|
|
for idx in range(n_crops)
|
|
]
|
|
imgs = np.concatenate(crop_imgs, axis=1)
|
|
imgs = [img for img in imgs]
|
|
if name == 'TenCrop':
|
|
warnings.warn(
|
|
'TenCrop is not supported, only show one crop')
|
|
self.intermediate_imgs.append({'name': name, 'imgs': imgs})
|
|
return data
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
cfg = Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
init_default_scope(cfg.get('default_scope', 'mmaction'))
|
|
|
|
dataset_cfg = cfg.get(args.phase + '_dataloader').get('dataset')
|
|
dataset = DATASETS.build(dataset_cfg)
|
|
|
|
intermediate_imgs = []
|
|
dataset.pipeline = InspectCompose(dataset.pipeline.transforms,
|
|
intermediate_imgs)
|
|
|
|
|
|
vis_backends = [dict(
|
|
type='LocalVisBackend',
|
|
save_dir=args.output_dir,
|
|
)]
|
|
visualizer = ActionVisualizer(
|
|
vis_backends=vis_backends, save_dir='place_holder')
|
|
|
|
if args.label:
|
|
labels = open(args.label).readlines()
|
|
labels = [x.strip() for x in labels]
|
|
visualizer.dataset_meta = dict(classes=labels)
|
|
|
|
|
|
display_number = min(args.show_number, len(dataset))
|
|
progress_bar = ProgressBar(display_number)
|
|
|
|
for i, item in zip(range(display_number), dataset):
|
|
rescale_factor = args.rescale_factor
|
|
if args.mode == 'original':
|
|
video = intermediate_imgs[0]['imgs']
|
|
elif args.mode == 'transformed':
|
|
video = intermediate_imgs[-1]['imgs']
|
|
elif args.mode == 'concat':
|
|
ori_video = intermediate_imgs[0]['imgs']
|
|
trans_video = intermediate_imgs[-1]['imgs']
|
|
video = make_grid([ori_video, trans_video],
|
|
['original', 'transformed'], rescale_factor)
|
|
rescale_factor = None
|
|
else:
|
|
video = make_grid([result['imgs'] for result in intermediate_imgs],
|
|
[result['name'] for result in intermediate_imgs],
|
|
rescale_factor)
|
|
rescale_factor = None
|
|
|
|
intermediate_imgs.clear()
|
|
|
|
data_sample = item['data_samples'].numpy()
|
|
|
|
file_id = f'video_{i}'
|
|
video = [x[..., ::-1] for x in video]
|
|
visualizer.add_datasample(
|
|
file_id, video, data_sample, fps=args.fps, out_type='video')
|
|
progress_bar.update()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|