# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy as cp import tempfile import cv2 import mmcv import mmengine import numpy as np import onnxruntime import torch from mmdet.structures.bbox import bbox2roi from mmengine import DictAction from mmaction.apis import detection_inference from mmaction.utils import frame_extract, get_str_type try: import moviepy.editor as mpy except ImportError: raise ImportError('Please install moviepy to enable output file') FONTFACE = cv2.FONT_HERSHEY_DUPLEX FONTSCALE = 0.5 FONTCOLOR = (255, 255, 255) # BGR, white MSGCOLOR = (128, 128, 128) # BGR, gray THICKNESS = 1 LINETYPE = 1 def hex2color(h): """Convert the 6-digit hex string to tuple of 3 int value (RGB)""" return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16)) plate_blue = '03045e-023e8a-0077b6-0096c7-00b4d8-48cae4' plate_blue = plate_blue.split('-') plate_blue = [hex2color(h) for h in plate_blue] plate_green = '004b23-006400-007200-008000-38b000-70e000' plate_green = plate_green.split('-') plate_green = [hex2color(h) for h in plate_green] def visualize(frames, annotations, plate=plate_blue, max_num=5): """Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted results. plate (str): The plate used for visualization. Default: plate_blue. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames. """ assert max_num + 1 <= len(plate) plate = [x[::-1] for x in plate] frames_out = cp.deepcopy(frames) nf, na = len(frames), len(annotations) assert nf % na == 0 nfpa = len(frames) // len(annotations) anno = None h, w, _ = frames[0].shape scale_ratio = np.array([w, h, w, h]) for i in range(na): anno = annotations[i] if anno is None: continue for j in range(nfpa): ind = i * nfpa + j frame = frames_out[ind] for ann in anno: box = ann[0] label = ann[1] if not len(label): continue score = ann[2] box = (box * scale_ratio).astype(np.int64) st, ed = tuple(box[:2]), tuple(box[2:]) cv2.rectangle(frame, st, ed, plate[0], 2) for k, lb in enumerate(label): if k >= max_num: break text = abbrev(lb) text = ': '.join([text, str(score[k])]) location = (0 + st[0], 18 + k * 18 + st[1]) textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE, THICKNESS)[0] textwidth = textsize[0] diag0 = (location[0] + textwidth, location[1] - 14) diag1 = (location[0], location[1] + 2) cv2.rectangle(frame, diag0, diag1, plate[k + 1], -1) cv2.putText(frame, text, location, FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) return frames_out def load_label_map(file_path): """Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name). """ lines = open(file_path).readlines() lines = [x.strip().split(': ') for x in lines] return {int(x[0]): x[1] for x in lines} def abbrev(name): """Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...' """ while name.find('(') != -1: st, ed = name.find('('), name.find(')') name = name[:st] + '...' + name[ed + 1:] return name def pack_result(human_detection, result, img_h, img_w): """Short summary. Args: human_detection (np.ndarray): Human detection result. result (type): The predicted label of each human proposal. img_h (int): The image height. img_w (int): The image width. Returns: tuple: Tuple of human proposal, label name and label score. """ human_detection[:, 0::2] /= img_w human_detection[:, 1::2] /= img_h results = [] if result is None: return None for prop, res in zip(human_detection, result): res.sort(key=lambda x: -x[1]) results.append( (prop.data.cpu().numpy(), [x[0] for x in res], [x[1] for x in res])) return results def parse_args(): parser = argparse.ArgumentParser(description='MMAction2 demo') parser.add_argument('video', help='video file/url') parser.add_argument('out_filename', help='output filename') parser.add_argument( '--config', default=('configs/detection/slowonly/slowonly_k700-pre' '-r50_8xb8-8x8x1-10e_ava-kinetics-rgb.py'), help='spatialtemporal detection model config file path') parser.add_argument( '--onnx-file', help='spatialtemporal detection onnx file path') parser.add_argument( '--det-config', default='demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py', help='human detection config file path (from mmdet)') parser.add_argument( '--det-checkpoint', default=('http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/' 'faster_rcnn_r50_fpn_2x_coco/' 'faster_rcnn_r50_fpn_2x_coco_' 'bbox_mAP-0.384_20200504_210434-a5d8aa15.pth'), help='human detection checkpoint file/url') parser.add_argument( '--det-score-thr', type=float, default=0.9, help='the threshold of human detection score') parser.add_argument( '--det-cat-id', type=int, default=0, help='the category id for human detection') parser.add_argument( '--action-score-thr', type=float, default=0.5, help='the threshold of human action score') parser.add_argument( '--label-map', default='tools/data/ava/label_map.txt', help='label map file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--short-side', type=int, default=256, help='specify the short-side length of the image') parser.add_argument( '--predict-stepsize', default=8, type=int, help='give out a prediction per n frames') parser.add_argument( '--output-stepsize', default=4, type=int, help=('show one frame per n frames in the demo, we should have: ' 'predict_stepsize % output_stepsize == 0')) parser.add_argument( '--output-fps', default=6, type=int, help='the fps of demo video output') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, default={}, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. For example, ' "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") args = parser.parse_args() return args def main(): args = parse_args() tmp_dir = tempfile.TemporaryDirectory() frame_paths, original_frames = frame_extract( args.video, out_dir=tmp_dir.name) num_frame = len(frame_paths) h, w, _ = original_frames[0].shape # resize frames to shortside new_w, new_h = mmcv.rescale_size((w, h), (args.short_side, np.Inf)) frames = [mmcv.imresize(img, (new_w, new_h)) for img in original_frames] w_ratio, h_ratio = new_w / w, new_h / h # Get clip_len, frame_interval and calculate center index of each clip config = mmengine.Config.fromfile(args.config) config.merge_from_dict(args.cfg_options) val_pipeline = config.val_pipeline sampler = [ x for x in val_pipeline if get_str_type(x['type']) == 'SampleAVAFrames' ][0] clip_len, frame_interval = sampler['clip_len'], sampler['frame_interval'] window_size = clip_len * frame_interval assert clip_len % 2 == 0, 'We would like to have an even clip_len' # Note that it's 1 based here timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2, args.predict_stepsize) # Load label_map label_map = load_label_map(args.label_map) try: if config['data']['train']['custom_classes'] is not None: label_map = { id + 1: label_map[cls] for id, cls in enumerate(config['data']['train'] ['custom_classes']) } except KeyError: pass # Get Human detection results center_frames = [frame_paths[ind - 1] for ind in timestamps] human_detections, _ = detection_inference(args.det_config, args.det_checkpoint, center_frames, args.det_score_thr, args.det_cat_id, args.device) torch.cuda.empty_cache() for i in range(len(human_detections)): det = human_detections[i] det[:, 0:4:2] *= w_ratio det[:, 1:4:2] *= h_ratio human_detections[i] = torch.from_numpy(det[:, :4]).to(args.device) # Build STDET model session = onnxruntime.InferenceSession(args.onnx_file) predictions = [] img_norm_cfg = dict( mean=np.array(config.model.data_preprocessor.mean), std=np.array(config.model.data_preprocessor.std), to_rgb=False) print('Performing SpatioTemporal Action Detection for each clip') assert len(timestamps) == len(human_detections) prog_bar = mmengine.ProgressBar(len(timestamps)) for timestamp, proposal in zip(timestamps, human_detections): if proposal.shape[0] == 0: predictions.append(None) continue start_frame = timestamp - (clip_len // 2 - 1) * frame_interval frame_inds = start_frame + np.arange(0, window_size, frame_interval) frame_inds = list(frame_inds - 1) imgs = [frames[ind].astype(np.float32) for ind in frame_inds] _ = [mmcv.imnormalize_(img, **img_norm_cfg) for img in imgs] # THWC -> CTHW -> 1CTHW input_array = np.stack(imgs).transpose((3, 0, 1, 2))[np.newaxis] rois = bbox2roi([proposal]) input_feed = { 'input_tensor': input_array, 'rois': rois.cpu().data.numpy() } outputs = session.run(['cls_score'], input_feed=input_feed) logits = outputs[0] scores = 1 / (1 + np.exp(-logits)) prediction = [] # N proposals for i in range(proposal.shape[0]): prediction.append([]) # Perform action score thr for i in range(scores.shape[1]): if i not in label_map: continue for j in range(proposal.shape[0]): if scores[j, i] > args.action_score_thr: prediction[j].append((label_map[i], scores[j, i].item())) predictions.append(prediction) prog_bar.update() results = [] for human_detection, prediction in zip(human_detections, predictions): results.append(pack_result(human_detection, prediction, new_h, new_w)) def dense_timestamps(timestamps, n): """Make it nx frames.""" old_frame_interval = (timestamps[1] - timestamps[0]) start = timestamps[0] - old_frame_interval / n * (n - 1) / 2 new_frame_inds = np.arange( len(timestamps) * n) * old_frame_interval / n + start return new_frame_inds.astype(np.int64) dense_n = int(args.predict_stepsize / args.output_stepsize) frames = [ cv2.imread(frame_paths[i - 1]) for i in dense_timestamps(timestamps, dense_n) ] print('Performing visualization') vis_frames = visualize(frames, results) vid = mpy.ImageSequenceClip([x[:, :, ::-1] for x in vis_frames], fps=args.output_fps) vid.write_videofile(args.out_filename) tmp_dir.cleanup() if __name__ == '__main__': main()